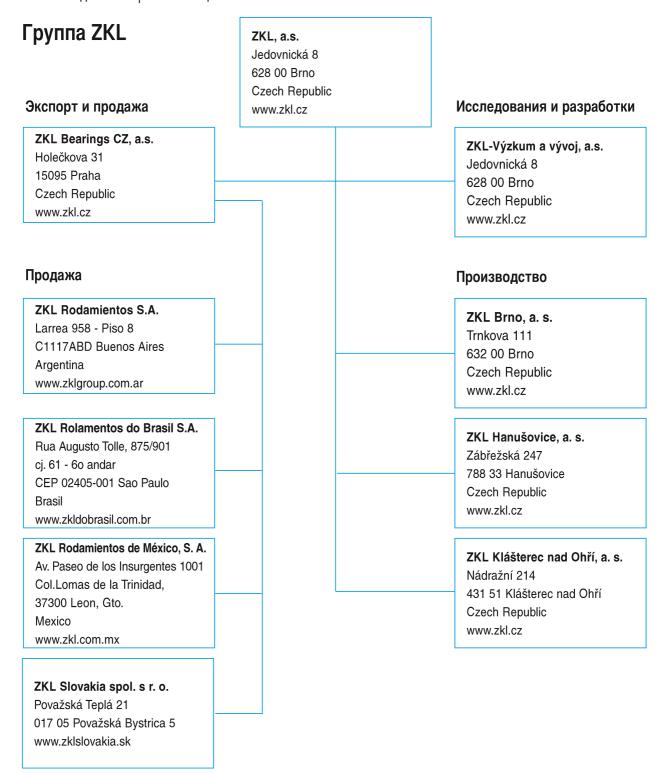


ПОДШИПНИКИ КАЧЕНИЯ

Данные, содержащиеся в настоящей публикации, основываются на действующих стандартах и проверены на практике Допускается возможность изменений, возникающих в результате исследований и производства

Содержание

Предисловие	6
1. Основной расчет	7
1.1 Динамическая нагрузка	7
1.1.1 Основная динамическая грузоподъемность	7
1.1.2 Долговечность	7
1.1.3 Эквивалентная динамическая нагрузка	14
1.1.4 Влияние температуры	16
1.2 Статическая нагрузка	17
1.2.1 Основная статическая грузоподъемность	17
1.2.2 Эквивалентная статическая нагрузка	17
1.2.3 Надежность подшипников при статической нагрузке	18
1.3 Предельная частота вращения	18
2. Данные о конструкции подшипников	19
2.1 Основные размеры	19
2.2 Система обозначений	20
2.3 Точность подшипников	27
2.4 Внутренний зазор	38
2.5 Сепаратор	42
2.6 Защитные шайбы	42
3. Конструкция подшипникового узла	43
3.1 Общие принципы проектирования подшипникового узла с подшипниками качения	43
3.2 Закрепление подшипника	44
3.2.1 Радиальное закрепление подшипника	44
3.2.2 Осевое закрепление подшипника	46
3.3 Уплотнения	51
3.3.1 Бесконтактное уплотнение	51
3.3.2 Уплотнение трением	52
3.3.3 Комбинированное уплотнение	53
4. Смазка подшипников	54
4.1 Смазка пластическим смазочным материалом	54
4.1.1 Интервал добавления смазки	54
4.1.2 Пластические смазочные для подшипников	54
4.2 Смазка жидким маслом	57
4.2.1 Жидкие масла для подшипников	57
4.3 Смазка твердыми смазочными материалами	60
5. Установка и демонтаж подшипников	60
Таблицы подшипников качения	62
Однорядные шариковые подшипники	64
Однорядные радиально-упорные шариковые подшипники	86
Двухрядные радиально-упорные шариковые подшипники	102
Двухрядные радиальные шариковые сферические подшипники	106
Однорядные роликовые подшипники с короткими цилиндрическими роликами	112
Двухрядные роликовые подшипники с короткими цилиндрическими роликами	128
Однорядные роликовые подшипники с игольчатыми роликами	132
Двухрядные роликовые подшипники со сферическими роликами	136
Роликовые подшипники с коническими роликами	150
Упорные шариковые подшипники	172
Упорные роликовые подшипники со сферическими роликами	182
Закрепительные подшипники и опоры для подшипников	192
Шарнирные подшипники	204
Сопутствующие части подшипников качения	204
Тела качения	218
Специальные подшипники качения	224
оподнального подшиними на тогии	<i></i> ¬


Предисловие

Публикация Подшипники качения ZKL показывает обзор стандартизованных подшипников качения и сопутствующих частей, которые выпускаются с обозначением ZKL.

По конструкции, производству, складскому хранению и продаже подшипников качения применяются международные стандарты ISO и национальные стандарты.

Техническая часть публикации содержит самые важные данные, касающиеся расчетов, конструктивных данных о проектировании подшипниковых узлов, смазки, а также об установке и демонтаже подшипников качения. В разделе таблиц приведены выпускаемые стандартизованные подшипники качения и сопутствующие части в основном конструктивном исполнении и основные модификации основного исполнения, такие как подшипники с коническим отверстием, подшипники с защитной шайбой или с канавкой для стопорного кольца и т. п.

1. Основной расчет

Необходимые размеры подшипника определяются на основании действующих внешних усилий, а также исходя из требований по долговечности и надежности подшипника в подшипниковом узле. Размер, направление, ориентация и характер нагрузки, действующей на подшипник, а также частота вращения подшипника при его работе являются решающими факторми для выбора типа и размера подшипника. При этом также необходимо учитывать дополнительные специальные или важные условия каждого случая подшипникового узла, как например, температура работы, пространственные возможности, простота установки подшипника, требования по смазке, уплотнение и т. д., которые могут повлиять на выбор самого подходящего подшипника. Для данных конкретных условий могут в многих случаях подходить разные типы подшипников.

С точки зрения воздействия внешних усилий и функции подшипника в соответствующем подшипниковом узле или конструкции различаются в подшипниковой технике два вида нагрузки подшипника качения:

- случай, когда подшипниковые кольца находятся относительно друг друга в вращательном движении и подшипник в таком состоянии подвергнут воздействию внешних усилий (это относится к большинству случаев применения подшипников) речь идет о динамической нагрузке подшипника,
- случай, когда подшипниковые кольца относительно друг друга не перемещаются или передвигаются очень медленно, подшипник передает колебательное движение или внешние усилия воздействуют короче, чем промежуток времени одного оборота подшипника речь идет о статической нагрузке подшипника.

Для расчета надежности работы подшипника в первом случае решающей является долговечность, обуславливаемая дефектами, возникающими усталостью материала некоторой из деталей подшипника. Во втором случае таким является постоянная деформация рабочих поверхностей в месте контакта тел качения и дорожек качения.

1.1 Динамическая нагрузка

1.1.1 Основная динамическая грузоподъемность

Основная динамическая грузоподъемность – это постоянная непеременная нагрузка, которую может подшипник теоретически воспринимать при основной долговечности одного миллиона оборотов.

Для радиальных подшипников основная динамическая грузоподъемность C_r относится к непеременной, чисто радиальной нагрузке. Для упорных подшипников основная осевая динамическая грузоподъемность C_a относится к непеременной, чисто осевой нагрузке, действующей в оси подшипника.

Для каждого из подшипников в разделе таблиц приводятся основные динамические грузоподъемности С, и Са, которых величина зависит от размера подшипника, числа тел качения, материала и конструкции подшипника. Значения основной динамической грузоподъемности определены по стандарту STN ISO 281. Эти величины проверены на испытательных установках и подтверждены результатами эксплуатации.

1.1.2 Долговечность

Долговечность подшипника – это количество оборотов, которое выполнит одно кольцо относительно второго кольца до момента, когда появятся первые признаки усталости материала на одном из колец или на теле качения.

Между подшипниками одинакового типа могут оказаться значительные различия по долговечности – поэтому для расчета долговечности по STN ISO 281 применяется в качестве базы основная долговечность, т. е. долговечность представляемая сроком работы, которую достигнет или перевысит группа подшипников при надежности 90 %.

Уравнение основной долговечности

Основная долговечность подшипника – математически определяется уравнением долговечности, которое действительно для всех типов подшипников.

$$L_{10} = \left(rac{C}{P}
ight)^{
m p}$$
 или $rac{C}{P} = \left(L_{10}
ight)^{rac{1}{p}}$

В таблице 1 приводится зависимость долговечности L_{10} в миллионах оборотов и соответствующее соотношение С/Р. В случае, если частота вращения не меняется, возможно для расчета долговечности использовать упрощенное уравнение, которое определяет основную долговечность в часах работы:

$$L_{10h} = \left(\frac{C}{P}\right)^{p} \cdot \frac{10^{6}}{60 \cdot n}$$
 [yac]

 ${f L}_{{
m 10чаc}}-$ основная долговечность [час] n — частота вращения [мин $^{-1}$]

Зависимость соотношения C/P от основной долговечности $L_{_{10час}}$ и от частоты вращения n приведена для шариковых подшипников B таблице B, для цилиндрических, игольчатых, сферических и конических роликоподшипников B таблице B.

ļля шарикоподшип						ı. и конич. ролокоп	
Долговечность	C	Долговечность	C	Долговечность	C	Долговечность	C
L ₁₀	Р	L ₁₀	Р	L ₁₀	Р	L ₁₀	Р
10 ⁶ об.		10 ⁶ об.		10 ⁶ об.		10 ⁶ об.	
0,5	0,793	600	8,43	0,5	0,812	600	6,81
0,75	0,909	650	8,66	0,75	0,917	650	6,98
1	1	700	8,88	1	1	700	7,14
1,5	1,14	750	9,09	1,5	1,13	750	7,29
2	1,26	800	9,28	2	1,24	800	7,43
3	1,44	850	9,47	3	1,39	850	7,56
4	1,59	900	9,65	4	1,52	900	7,70
5	1,71	950	9,83	5	1,62	950	7,82
		4000	10			4000	7.01
6	1,82	1000	10	6	1,71	1000	7,94
8	2	1100	10,3	8	1,87	1100	8,17
10	2,15	1200	10,6	10	2	1200	8,39
12	2,29	1300	10,9	12	2,11	1300	8,59
14	2,41	1400	11,2	14	2,21	1400	8,79
16	2,41		11,4	16		1500	8,97
		1500			2,30		
18	2,62	1600	11,7	18	2,38	1600	9,15
20	2,71	1700	11,9	20	2,46	1700	9,31
25	2,92	1800	12,2	25	2,63	1800	9,48
30	3,11	1900	12,4	30	2,77	1900	9,63
35	3,27	2000	12,6	35	2,91	2000	9,78
40	3,42	2200	13	40	3,02	2200	10,1
45	0.50	0.400	10.4	45	0.40	0.400	10.0
45	3,56	2400	13,4	45	3,13	2400	10,3
50	3,68	2600	13,8	50	3,23	2600	10,6
60	3,91	2800	14,1	60	3,42	2800	10,8
70	4,12	3000	14,4	70	3,58	3000	11
80	4,31	3500	15,2	80	3,72	3500	11,5
90	4,48	4000	15,9	90	3,86	4000	12
100	4,64	4500	16,5	100	3,98	4500	12,5
120	4,04	5000	17,1	120	4,20	5000	12,5
140	5,19	5500	17,7	140	4,40	5500	13,2
160	5,43	6000	18,2	160	4,58	6000	13,6
180	5,65	7000	19,1	180	4,75	7000	14,2
200	5,85	8000	20	200	4,90	8000	14,8
250	6,30	9000	20,8	250	5,24	9000	15,4
300	6,69	10000	21,5	300	5,54	10000	15,4
	7.05		21,0				
350	7,05	12500	23,2	350	5,80	12500	16,9
400	7,37	15000	24,7	400	6,03	15000	17,9
450	7,66	17500	26	450	6,25	17500	18,7
500	7,94	20000	27,1	500	6,45	20000	19,5
550	8,19	25000	29,2	550	6,64	25000	20,9

Соотношение С/Р в	з зависи	мости о	т долго	рвечнос	ти L _{10ча}	_с часто	гы врац	цения п	для ша	риковь	іх подш	ипнико	в Та	аблица 2
Ј олговечность	Част	ота вра	щения r	n [мин⁻¹]										
L _{10час}	10	16	25	40	63	100	125	160	200	250	320	400	500	630
час														
100									1.00	4.45	1.04	1.04	1 45	1.50
100 500	-	-	-	1,06	1,24	1,45	1,56	1,68	1,06 1,82	1,15 1,96	1,24 2,12	1,34 2,29	1,45 2,47	1,56 2,67
1 000	-	-	1,15	1,34	1,56	1,45	1,96	2,12	2,29	2,47	2,12	2,29	3,11	3,36
1 250	-	1.06	1,13	1,45	1,68	1,96	2,12	2,12	2,29	2,47	2,88	3,11	3,36	3,63
1 230	-	1,00	1,24	1,40	1,00	1,90	۷,۱۷	2,29	2,47	2,07	2,00	3,11	3,30	3,03
1 600	-	1,15	1,34	1,56	1,82	2,12	2,29	2,47	2,67	2.88	3,11	3.36	3,63	3,91
2 000	1,06	1,24	1,45	1,68	1,96	2,29	2,47	2,67	2,88	3,11	3,36	3,63	3,91	4,23
2 500	1,15	1,34	1,56	1,82	2,12	2,47	2,67	2,88	3,11	3,36	3,63	3,91	4,23	4,56
3 200	1,24	1,45	1,68	1,96	2,29	2,67	2,88	3,11	3,36	3,63	3,91	4,23	4,56	4,93
4 000	1,34	1,56	1.82	2,12	2,47	2,88	3,11	3,36	3,63	3,91	4.23	4,56	4,93	5,32
5 000	1,45	1,68	1,96	2,12	2,67	3,11	3,36	3,63	3,91	4,23	4,56	4,93	5,32	5,75
6 300	1,56	1,82	2,12	2,47	2,88	3,36	3,63	3,91	4,23	4,56	4,93	5,32	5,75	6,20
8 000	1,68	1,96	2,29	2,67	3,11	3,63	3,91	4,23	4,56	4,93	5,32	5,75	6,20	6,70
0 000	1,00	1,00	2,20	2,07	0,11	0,00	0,01	1,20	1,00	1,00	0,02	0,70	0,20	0,70
10 000	1,82	2,12	2,47	2,88	3,36	3,91	4,23	4,56	4,93	5,32	5,75	6,20	6,70	7,23
12 500	1,96	2,29	2,67	3,11	3,36	4,23	4,56	4,93	5,32	5,75	6,20	6,70	7,23	7,81
16 000	2,12	2,47	2,88	3,36	3,91	4,56	4,93	5,23	5,75	6,20	6,70	7,23	7,81	8,43
20 000	2,29	2,67	3,11	3,63	4,23	4,93	5,32	5,75	6,20	6,70	7,23	7,81	8,43	9,11
25 000	2,47	2,88	3,36	3,91	4,56	5,32	5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83
32 000	2,67	3,11	3.63	4,23	4,93	5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83	10,6
40 000	2,88	3,36	3,91	4,56	5,32	6,20	6,70	7,23	7,81	8,43	9,11	9.83	10,6	11,5
50 000	3,11	3,63	4,23	4,93	5,75	6,70	7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4
63 000	3,36	3,91	4,56	5,32	6,20	7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4	13,4
80 000	3,36	4,23	4,93	5,75	6,70	7,81	8,43	9,11	9,83	10,6	11,5	12,4	13,4	14,5
100 000	3,91	4,56	5,32	6,20	7,23	8,43	9,11	9,83	10,6	11,5	12,4	13,4	14,5	15,6
200 000	4,93	5,75	6,70	7,81	9,11	10,6	11,5	12,4	13,4	14,5	15,6	16,8	18,2	19,6

Долговечность	L	Настота	вращен	ия п [ми	H ⁻¹]									
L _{10час}	800	1000	1250	1600	2000	2500	3200	4000	5000	6300	8000	10000	12500	16000
час														
100	1,68	1,82	1,96	0.10	2,29	0.47	2,67	2,88	0.11	3.36	3.63	3,91	4,23	1 EG
500	2,88	3,11	3.36	2,12 3.63	3,91	2,47 4,23	4.56	4,93	3,11 5,32	5,75	6.20	6.70	7,23	4,56 7,81
1 000	3,63	3,91	4,23	4,56	4,93	5,32	5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83
1 250	3,91	4,23	4,23	4,93	5,32	5,75	6,20	6.70	7,23	7,23	8.43	9,11	9,11	10.6
1 250	3,91	4,23	4,50	4,93	5,32	5,75	0,20	0,70	7,23	7,01	0,43	9,11	9,00	10,0
1 600	4,23	4,56	4,93	5,32	5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83	10,6	11,5
2 000	4,56	4,93	5,32	5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4
2 500	4,93	5,32	5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4	13,4
3 200	5,32	5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4	13,4	14,5
4 000	5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4	13,4	14,5	15,6
5 000	6,20	6,70	7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4	13,4	14,5	15,6	16,8
6 300	6,70	7,23	7,81	8,43	9,11	9.83	10.6	11,5	12,4	13,4	14,5	15.6	16.8	18.2
8 000	7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4	13,4	14,5	15,6	16.8	18.2	19,6
		,	,		Ĺ	Ĺ	,		,	,	,	,	,	,
10 000	7,81	8,43	9,11	9,83	10,6	11,5	12,4	13,4	14,5	15,6	16,8	18,2	19,6	21,2
12 500	8,43	9,11	9,83	10,6	11,5	12,4	13,4	14,5	15,6	16,8	18,2	19,6	21,2	22,9
16 000	9,11	9,83	10,6	11,5	12,4	13,4	14,5	15,6	16,8	18,2	19,6	21,2	22,9	24,7
20 000	9,83	10,6	11,5	12,4	13,4	14,5	15,6	16,8	18,2	19,6	21,2	22,9	24,7	26,7
25 000	10,6	11,5	12,4	13,4	14,5	15,6	16,8	18,2	19,6	21,2	22,9	24,7	26,7	28,8
32 000	11,5	12,4	13,4	14,5	15,6	16,8	18,2	19,6	21,2	22,9	24,7	26,7	28,8	31,1
40 000	12,4	13,4	14,5	15.6	16,8	18,2	19,6	21,2	22,9	24,7	26,7	28,8	31,1	-
50 000	13,4	14,5	15,6	16,8	18,2	19,6	21,2	22,9	24,7	26,7	28,8	31,1	-	-
63 000	14,5	15,6	16,8	18,2	19,6	21,2	22,9	24,7	26,7	28,8	31,1	-	-	-
80 000	15,6	16,8	18,2	19,6	21,2	22,9	24,7	26,7	28,8	31,1	-	-	-	-
100 000	16,8	18,2	19,6	21,2	22,9	24,7	26,7	28,8	31,1	-	-	-	-	-
200 000	21,2	22,9	24,7	26,7	28,8	31,1	-	-	-	-	-	-	-	-

Соотношение С/Р в зависимости от долговечности L _{10-ас} и частоты вращения п для цилиндрических, игольчатых, сферических и конических роликовых подшипников Таблица 3 Долговечность Частота вращения п [мин ⁻¹]														
L _{104ac}	10	ота вра 16	щения г 25	т [мин [*]] 40	63	100	125	160	200	250	320	400	500	630
час														
100	-	-	-	-	-	-	-	-	1,05	1,1	1,21	1,30	1,39	1,49
500	-	-	-	1,05	1,21	1,39	1,49	1,60	1,71	1,83	1,97	2,11	2,26	2,42
1 000	-	-	1,13	1,30	1,49	1,71	1,83	1,97	2,11	2,26	2,42	2,59	2,78	2,97
1 250	-	1,05	1,21	1,39	1,60	1,83	1,97	2,11	2,26	2,42	2,59	52,78	2,97	3,19
1 600	-	1,13	1,30	1,49	1,71	1,97	2,11	2,26	2,42	2,59	2,78	2,97	3,19	3,42
2 000	1,05	1,21	1,39	1,60	1,83	2,11	2,26	2,42	2,59	2,78	2,97	3,19	3,42	3,66
2 500	1,13	1,30	1,49	1,71	1,97	2,26	2,42	2,59	2,78	2,97	3,19	3,42	3,66	3,92
3 200	1,21	1,39	1,60	1,83	2,11	2,42	2,59	2,78	2,97	3,19	3,42	3,66	3,92	4,20
4 000	1,30	1,49	1,71	1,97	2,26	2,59	2,78	2,97	3,19	3,42	3,66	3,92	4,20	4,50
5 000	1,39	1,60	1,83	2,11	2,42	2,78	2,97	3,19	3,42	3,66	3,92	4,20	4,50	4,82
6 300	1,49	1,71	1,97	2,26	2,59	2,97	3,19	3,42	3,66	3,92	4,20	4,50	4,82	5,17
8 000	1,60	1,83	2,11	2,42	2,78	3,19	3,42	3,66	3,92	4,20	4,50	4,82	5,17	5,54
40.000	4 74	4.07	0.00	0.50	0.07	0.40	0.00	0.00	4.00	4.50	4.00	F 47	A	F 0.4
10 000	1,71	1,97	2,26	2,59	2,97	3,42	3,66	3,92	4,20	4,50	4,82	5,17	5,54	5,94
12 500	1,83	2,11	2,42	2,78	3,19	3,66	3,92	4,20	4,50	4,82	5,17	5,54	5,94	6,36
16 000 20 000	1,97 2,11	2,26 2,42	2,59 2,78	2,97 3,19	3,42 3,66	3,92 4,20	4,20 4,50	4,50 4,82	4,82 5,17	5,17 5,54	5,54 5,94	5,94 6,36	6,36 6,81	6,81 7,30
20 000	۷,۱۱	۷,4۷	2,70	5,19	3,00	4,20	4,50	4,02	3,17	5,54	5,34	0,50	0,01	7,30
25 000	2,26	2,59	2,97	3,42	3,92	4,50	4,82	5,17	5,54	5,94	6,36	6,81	7,30	7,82
32 000	2,42	2,78	3,19	3,66	4,20	4,82	5,17	5,54	5,94	6,36	6,81	7,30	7,82	8,38
40 000	2,59	2,97	3,42	3,92	4,50	5,17	5,54	5,94	6,36	6,81	7,30	7,82	8,38	8,98
50 000	2,78	3,19	3,66	4,20	4,82	5,54	5,94	6,36	6,81	7,30	7,82	8,38	8,98	9,62
63 000	2,97	3,42	3,92	4,50	5,17	5,94	6,36	6,81	7,30	7,82	8,38	8,98	9,62	10,3
80 000	3,19	3,66	4,20	4,82	5,54	6,36	6,81	7,30	7,82	8,38	8,98	9,62	10.3	11,0
100 000	3,42	3,92	4,50	5,17	5,94	6,81	7,30	7,82	8,38	8,98	9,62	10,3	11,0	11,8
200 000	4,20	4,82	5,54	6,36	7,30	8,38	8,98	9,62	10,3	11,0	11,8	12,7	13,6	14,6

Долговечность	Част	гота вра	щения п	[МИН ⁻¹]										
L _{10час}	800	1000	1250	1600	2000	2500	3200	4000	5000	6300	8000	10000	12500	16000
час														
100	1.00	1 71	1.00	1.07	0.11	0.00	0.40	0.50	0.70	0.07	0.10	0.40	0.00	2.00
500	1,60 2,59	1,71 2,78	1,83 2,97	1,97 3,19	2,11	2,26	2,42 3,92	2,59 4,20	2,78 4,50	2,97 4,82	3,19 5,7	3,42 5,54	3,66 5,94	3,92
1 000	3,19	3,42	3,66	3,19	3,42 4,20	3,66 4,50	4,82	5,17	5,54	5,94	6.36	6,81	7,30	6,36 7,82
1 250	3,42	3,42	3,92	4,20	4,50	4,82	5,17	5,17	5,94	6,36	6,81	7.30	7,82	8,38
1 230	3,42	3,00	5,32	4,20	4,50	4,02	3,17	5,54	3,34	0,50	0,01	7,50	7,02	0,50
1 600	3,66	3,92	4,20	4,50	4,82	5,17	5,54	5,94	6,36	6,81	7,30	7,82	8,38	8,98
2 000	3,92	4,20	4,50	4,82	5,17	5,54	5,94	6,36	6,81	7,30	7,82	8,38	8,98	9,62
2 500	4,20	4,50	4,82	5,17	5,54	5,94	6,36	6,81	7,30	7,82	8,38	8,98	9,62	10,3
3 200	4,50	4,82	5,17	5,54	5,94	6,36	6,81	7,30	7,82	8,38	8,98	9,62	10,3	11,0
4.000	4.00	E 17	E E A	E 0.4	6.06	6.01	7.00	7.00	0.00	0.00	0.60	10.0	11.0	11.0
4 000 5 000	4,82	5,17 5,54	5,54 5,94	5,94 6,36	6,36 6,81	6,81 7,30	7,30 7,82	7,82 8,38	8,38 8,98	8,98 9,62	9,62 10,3	10,3 11,0	11,0 11,8	11,8 12,7
6 300	5,17 5,54	5,94	6,36	6,81	7,30	7,82	8,38	8,98	9,62	10,3	11,0	11,8	12,7	13,6
8 000	5,94	6,36	6,81	7,30	7,82	8,38	8,98	9,62	10,3	11.0	11,8	12,7	13,6	14,6
0 000	5,34	0,50	0,01	7,50	7,02	0,50	0,50	9,02	10,5	11,0	11,0	12,7	10,0	14,0
10 000	6,36	6,81	7,30	7,82	8,38	8,98	9,62	10,3	11,0	11,8	12,7	13,6	14,6	15,6
12 500	6,81	7,30	7,82	8,38	8,98	9,62	10,3	11,0	11,8	12,7	13,6	14,6	15,6	16,7
16 000	7,30	7,82	8,38	8,98	9,62	10,3	11,0	11,8	12,7	13,6	14,6	15,6	16,7	17,9
20 000	7,82	8,38	8,98	9,62	10,3	11,0	11,8	12,7	13,6	14,6	15,6	16,7	17,9	19,2
25 000	8,38	8,98	9,62	10,3	11,0	11,8	12,7	13,6	14,6	15,6	16,7	17,9	19,2	20,6
32 000	8,98	9,62	10,3		11,8	12,7	13,6	14,6	15,6	16,7	17,9	19,2	20,6	-
40 000	9,62	10,3	11,0	,	12,7	13,6	14,6	15.6	16,7	17,9	19,2	20,6	-	-
50 000	10,3	11,0	11,8		13.6	14.6	15,6	16,7	17,9	19,2	20,6	-	_	_
00 000	10,0	. 1,0	. 1,0	, ,	. 5,0	. 1,0	10,0	. 0, /	. 7 ,0	. 0,2	20,0			
63 000	11,0	11,8	12,7	13,6	14,6	15,6	16,7	17,9	19,2	20,6	-	-	-	-
80 000	11,8	12,7	13,6	14,6	15,6	16,7	17,9	19,2	20,6	-	-	-	-	-
100 000	12,7	13,6	14,6	15,6	16,7	17,9	19,2	20,6	-	-	-	-	-	-
200 000	15,6	16,7	17,9	19,2	20,6	-	-	-	-	-	-	-	-	-

Для подшипниковых узлов дорожных и рельсовых транспортных средств возможно основную долговечность выразить в виде уравнения для числа километров пробега.

$$L_{10 ext{KM}} = \left(rac{C}{P}
ight)^{ ext{p}} \cdot rac{\pi ext{D}}{1000}$$

 ${\sf L}_{{\scriptscriptstyle 10{\sf KM}}}$ — основная долговечность [10 $^6{\sf KM}$] — диаметр колеса [м]

Ориентировочные значения основной долговечности

В случаях, когда для данного варианта подшипникового узла заранее неустановлена требуемая долговечность, возможно в качестве ориентировочных принять значения, приведенные в таблицах 4 и 5.

Ориентировочные значения основной долговечности в часах работы	Таблица 4
Вид установки	Долговечность L _{10 час}
	час
Приборы и изредка используемая оснастка	1 000
Электрические бытовые установки, малые вентиляторы	2 000 – 4 000
Установки с прерывистой эксплуатацией, ручная оснастка, цеховые краны, хозяйственная техника	4 000 – 8 000
Установки с прерывистой эксплуатацией с условием высокой надежности, вспомогательные установки в электростанциях, ленточные конвейеры, транспортные тележки, лифты	8 000 – 15 000
Прокатные станы	6 000 – 12 000
Установки для 8–16 часового режима работы, стационарные электродвигатели, шестеренные, редукторы, шпиндели текстильных машин, установки для обработки пластмассы, типографские установки, краны	15 000 – 30 000
Станки в общем понимании	20 000 – 30 000
Установки для беспрерывной работы: Стационарные электроустановки, транспортное оборудование, рольганги, насосы, центрифуги, нагнетательные установки, компрессоры, молотковые мельницы, грохоты, брикетовочные прессы, горнодобывающие лифты, канатные блоки	40 000 – 60 000
Установки для беспрерывной работы с высокой надежностью эксплуатации: Электроэнергетические установки, водонапорные установки, бумагоделательные установки, судовые установки	100 000 – 200 000

Ориентировочные значения основной долговечности в километрах пробега	Таблица 8
Вид транспортного средства	Долговечность L _{10км}
	KM
Колеса дорожных транспортных средств:	
Мотоциклы	60 000
Легковые автомобили	150 000 – 250 000
Грузовые автомобили, автобусы	400 000 – 500 000
Буксовые подшипники железнодорожных подвижных составов:	
Грузовые железнодорожные вагоны /согласно UIC/ при постоянном воздействии	
максимальной нагрузки на буксы	800-000
Трамваи	1 500 000
Пассажирские железнодорожные вагоны	3 000 000
Моторные вагоны и моторные транспортные установки	3 000 000 – 4 000 000
Локомотивы	3 000 000 – 5-000 000

Уравнение корректированной долговечности

Корректированная долговечность – это основная долговечность с коррекцией – при этом при расчете, кроме нагрузки, учитывается также влияние материала деталей подшипника, физико-механические и химические свойства смазки и температурный режим работы подшипника.

$$L_{na} = a_1 \cdot a_{23} \cdot L_{10}$$

L_{na} - корректированная долговечность для надежности (100-n)% и отличающихся от стандартных условий работы

[10⁶ oб]

 $a_{_{1}}$ - коэффициент надежности для иной чем 90 % надежности, смотри таблицу 6

 ${\bf a}_{23}$ - коэффициент надежности материала, смазки, технологии производства, смотри рис. 1

L₁₀ - основная долговечность

[10⁶ oб]

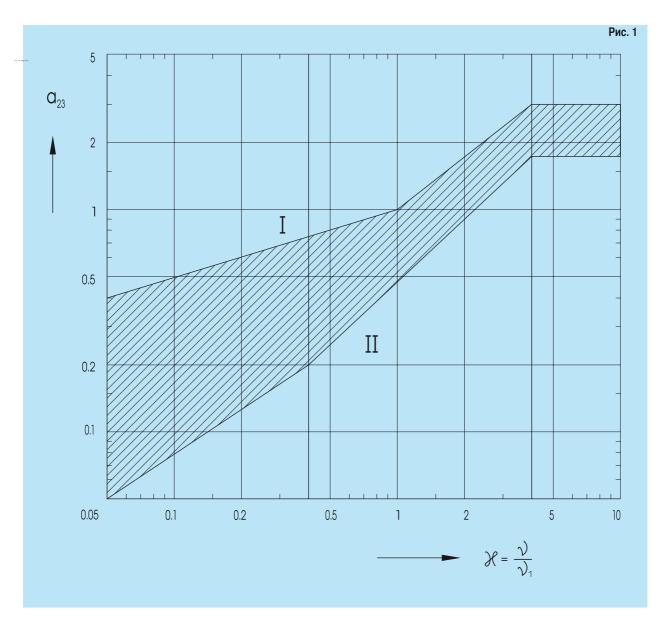
Значения коэффициента а ₁		Таблица 6
Надежность (%)	ل	a,
90	L,"	1,00
95	L _E	0,62
96	L <u>°</u>	0,53
97	L ₂	0,44
98	L ₂	0,33
99	L,	0,21

Для базового определения значений коэффициента a_{23} следует исходить из диаграммы на рисунке 1.

$$\varkappa = \frac{v}{v_1}$$

υ – кинематическая вязкость смазки при рабочей температуре подшипника [мм².с-1]

υ₁ – кинематическая вязкость для назначенной частоты вращения и выбранный размер подшипника [мм².с⁻¹]


Значения υ и υ , определяем по диаграмме на рисунке 24, или-же на рисунке 23.

В диаграмме на рис. 1 кривая I относится к радиальным шариковым подшипникам, которые работают в очень чистой среде. В остальных случаях коэффициент а₂₃ принимается ниже в зависимости от чистоты среды – при этом снижающаяся тенденция зависит от конструктивной группы подшипника в следующем порядке:

- шариковые подшипники радиально-упорные,
- конические роликовые подшипники,
- цилиндрические роликовые подшипники,
- двухрядные шариковые сферические подшипники,
- сферические роликовые подшипники.

Кривую II возможно использовать для определения коэффициента a_{23} для сферических роликовых подшипников, которые работают в пыльной среде.

Эти вопросы рекомендуем проконсультировать с поставщиком.

1.1.3 Эквивалентная динамическая нагрузка

В подшипниковом узле на подшипник воздействуют общим способом действующие усилия различной величины, при различной частоте вращения с различным периодом времени воздействия. С точки зрения методики расчета необходимо пересчитать воздействующие усилия на постоянную нагрузку, при которой подшипник будет иметь такую же долговечность, какую достигнет в условиях фактической нагрузки.

Таким образом пересчитанную радиальную или осевую нагрузку принято называть эквивалентной нагрузкой Р, или-же Р, (радиальной) или Р_а (осевой).

Комбинированная нагрузка

Способ нагрузки константный

Внешние усилия, воздействующие на подшипник, не меняются в части их размера, а также в части времени воздействия.

Радиальные подшипники

В случае, если на радиальный подшипник воздействуют константные усилия в радиальном и осевом направлении, действительно для расчета радиальной динамической эквивалентной нагрузки уравнение

$$P_{r} = X.F_{r} + Y.F_{s}$$
 [KH]

 Рг – радиальная эквивалентная динамическая нагрузка
 [кН]

 Fг – радиальное усилие, воздействующее на подшипник
 [кН]

 Fa – осевое усилие, воздействующее на подшипник
 [кН]

 X – коэффициент радиальной нагрузки

X – коэффициент радиальной нагрузкиY – коэффициент осевой нагрузки

Коэфициенты X и Y зависят от соотношения F_a/F_r . Значения X и Y приводятся в разделе таблиц или в пояснениях по каждой конструктивной группе подшипников, где приведены более подробные данные для расчета подшипников соответствующей конструктивной группы.

Упорные подшипники

Упорные шариковые подшипники могут воспринимать лишь усилия действующие в осевом направлении и для расчета осевой динамической эквивалентной нагрузки действительно уравнение

$$P_a = F_a$$
 [KH]

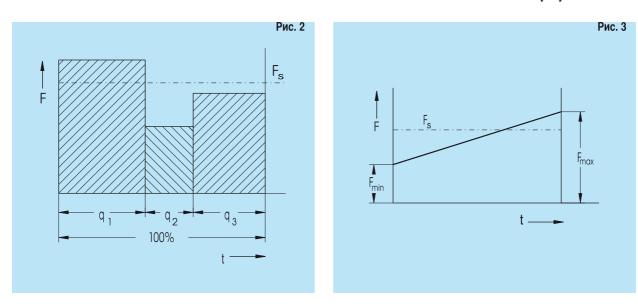
 $\begin{array}{c} {\sf P}_{\sf a} \text{ - осевая динамическая эквивалентная нагрузка} & [{\sf кH}] \\ {\sf F}_{\sf a} \text{ - осевая нагрузка на подшипник} & [{\sf кH}] \end{array}$

Упорные сферические роликовые подшипники могут воспринимать и некоторую радиальную нагрузку, однако лишь при одновременном воздействии осевой нагрузки – при этом должно соблюдаться условие $F_r \leq 0.55 \, F_a$. Осевая динамическая эквивалентная нагрузка определяется по формуле:

$$P_a = F_a + 1.2 F_r$$
 [KH]

Способ нагрузки переменный

Фактическая переменная нагрузка, которой график по времени известен, для расчета заменяется средней воображаемой нагрузкой. Такая воображаемая нагрузка имеет такое же влияние на подшипник, как фактическая переменная нагрузка.


Изменение размера нагрузки при постоянной частоте вращения

В случае, если на подшипник воздействует нагрузка в константном направлении, размер которой меняется по времени и при этом частота вращения постоянная (рис. 2), среднюю воображаемую нагрузку $F_{\rm s}$ определяем по формуле

где:
$$F_s = \left(\sum_{i=1}^n F_i^3. \frac{q_i}{100}\right)^{\frac{1}{3}}$$
 [кН]

При постоянной частоте вращения с линейным изменением нагрузки постоянного направления /рис. 3/ средняя воображаемая нагрузка определяется по формуле:

$$F_s = \frac{F_{\text{min}} + 2F_{\text{max}}}{3}$$
 [kH]

Если фактическая нагрузка имеет синусоидальный характер (рис. 4), то средняя воображаемая нагрузка равна

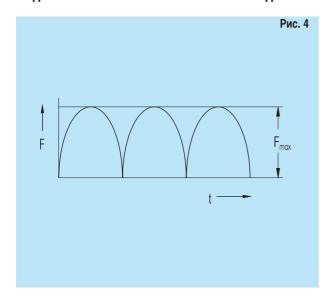
$$F_{c} = 0.75.F_{max}$$
 [KH]

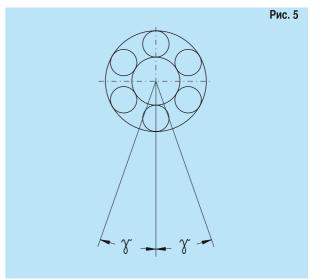
Изменение значения нагрузки при изменении частоты вращения

В случае, если на подшипник воздействует переменная по времени нагрузка и при этом меняется также частота вращения, средняя воображаемая нагрузка определяется по формуле

$$F_{s} = \left(\frac{\sum_{i=1}^{n} F_{i}^{3} \cdot q_{i} \cdot n_{i}}{\sum_{i=1}^{n} q_{i} \cdot n_{i}}\right)^{\frac{1}{3}}$$
 [KH]

$$n_{i} = n_{1} \dots n_{n} -$$
 постоянная частота вращения в тетчение воздействия составных нагрузок $F_{1}, \dots F_{n}$ [мин $^{-1}$] $q_{i} = q_{1} \dots q_{n} -$ доля воздействия составных нагрузок и частоты вращения [%]


В случае, если в зависимости от времени меняется лишь частота вращения, воображаемая средняя постоянная частота вращения определяется по формуле


$$n_s = \frac{\sum_{i=1}^{n} q_i \cdot n_i}{100}$$
 [MИН⁻¹]

n_s= средняя частота вращения

[MИН-1]

Подшипник выполняет колебательное движение

При колебательном движении с амплитудой колебания γ самым простым представляется заменить колебательное движение воображаемой ротацией, при которой частота ротации равна частоте колебания. Для радиальных подшипников средняя воображаемая нагрузка определяется по формуле

$$F_s = F_r \left(\frac{\gamma}{90}\right)^{\frac{1}{p}}$$
 [KH]

р - показатель: р = 3 для шариковых подшипников

 $p = \frac{10}{3}$ для цилиндрических, игольчатых, сферических и конических роликовых подшипников.

1.1.4 Влияние температуры

Поставляемый ассортимент подшипников предназначен для применения в среде с температурой до 120 °C. Исключением являются двухрядные сферические роликовые подшипники, которые могут работать при температурах до 180 °C, однорядные шариковые подшипники с уплотнениями (RS, 2RS, RSR, 2RSR), применимые при температуре до 110 °C, с уплотнениями RS2, 2RS2, применимые при температуре до 150 °C.

Для более высоких температур работы производятся подшипники качения так, чтобы обеспечивались необходимые физико-механические параметры и стабильность размеров. Вопрос подшипникового узла для более высоких температур рекомендуем проконсультировать с поставщиком подшипников.

Значения основной динамической грузоподъемности C_r или C_a , приводимые в разделе таблиц, необходимо перемножить на коэффициент f_s , значения которого указаны в таблице 7.

Значения коэффициента f _t			Tat	блица 7
Температура работы до – [° C]	150	200	250	300
Коэффициент f _t	0,95	0,9	0,75	0,6

1.2 Статическая нагрузка

1.2.1 Основная статическая грузоподъемность

Радиальная основная статическая грузоподъемность C_{or} и осевая основная статическая грузоподъемность C_{oa} для каждого подшипника указаны в разделе таблиц настоящей публикации. Значения C_{or} и C_{oa} определены путем расчета в соответствии с международным стандартом STN ISO 76.

Основная статическая грузоподъемность — это нагрузка, которая отвечает расчитанным контактным напряжениям в наиболее нагруженной зоне контакта тела качения и дорожки качения подшипника:

- 4600 МПа для двурядных шариковых сферических подшипников,
- 4200 МПа для остальных видов шариковых подшипников
- 4000 МПа для цилиндрических, игольчатых, сферических и конических роликовых подшипников.

1.2.2 Эквивалентная статическая нагрузка

Эквивалентная статическая нагрузка – это пересчитанная радиальная нагрузка P_{or} для радиальных подшипников и осевая статическая нагрузка P_{oa} для упорных подшипников.

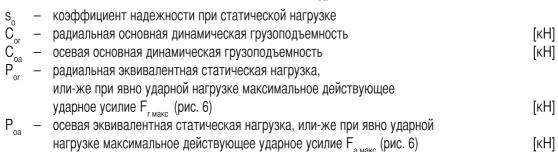
$P_{or} = X_o F_r + Y_o F_a$	[ĸH]

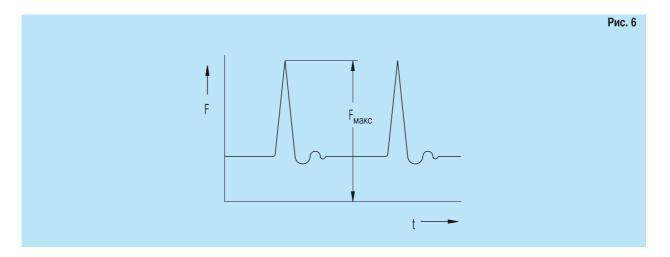
$$P_{oa} = X_o F_r + Y_o F_a$$
 [KH]

[ĸH]

 $\begin{array}{lll} P_{or} & - \text{радиальная эквивалентная статическая нагрузка} & [кH] \\ P_{oa} & - \text{осевая эквивалентная статическая нагрузка} & [кH] \\ F_{r} & - \text{радиальная нагрузкa} & [кH] \end{array}$

F_a — осевая нагрузка X_o — коэффициент радиальной нагрузки Y_o — коэффициент осевой нагрузки


Коэффициент s_o Движение подшипника	Способ нагрузки, требования по ходу подшипника	Шариковые подшипники	Таблица 8 s ₀ Цилиндрические, игольчатые, сферические, конические роликовые подшипники
Вращательное	Явно ударная нагрузка, высокие требования по спокойному ходу	2	4
	После статической нагрузки подшипник вращается при более низкой нагрузке	1,5	3
	Нормальные требования по спокойному ходу	1	1,5
	Нормальные условия работы и нормальные требования относительно хода	1	1,5
	Спокойный ход без ударов	0,5	1
Колебательное	Малый угол отклонения с высокой частотой и ударной неравномерной нагрузкой	2	3,5
	Большой угол отклонения с низкой частотой и с примерно константной периодической нагрузкой	1,5	2,5
Невращательное	Явно ударная нагрузка	1,5 – 1	3 – 2
(в покое)	Нормальная и низкая нагрузка, на подшипники не кладутся особые требования	1 – 0,4	2 – 0,8
	Упорные сферические подшипники при всех видах движения и нагрузки	-	4


Коэффициенты $X_{_0}$ и $Y_{_0}$ приводятся по подшипникам в разделе таблиц настоящей публикации. Одновременно указываются более четкие данные для определения эквивалентной статической нагрузки подшипников данной конструктивной группы.

1.2.3 Надежность подшипников при статической нагрузке

На практике определяется надежность подшипников при статической нагрузке исходя из соотношения $C_{_{or}}$ / $P_{_{or}}$ или $C_{_{oa}}$ / $P_{_{oa}}$ и сопоставляется с данными в таблице 8, в которой указаны значения минимальных допустимых коэффициентов so для различных условий

$$s_o = \frac{C_{or}}{P_{or}}$$
 или $\frac{C_{oa}}{P_{oa}}$

1.3 Предельная частота вращения

Предельная частота вращения зависит от типа подшипника, его точности, исполнении сепаратора, внутреннего зазора, условий работы в подшипниковом узле, способа смазки, а также от ряда других обстоятельств. Эта совокупность влияний определяет образование тепла в подшипнике и следовательно также ограничение частоты вращения, которая ограничена прежде всего рабочей температурой смазки.

Для ориентации приводятся в разделе таблиц настоящего издания величины предельной частоты вращения для каждого подшипника нормального класса точности для случая использования пластической смазки или масла. Приведенные значения действительны для случая соответствующей нагрузки (L_{10час} ≥100000 часов) и нормальных условий работы и охлаждения.

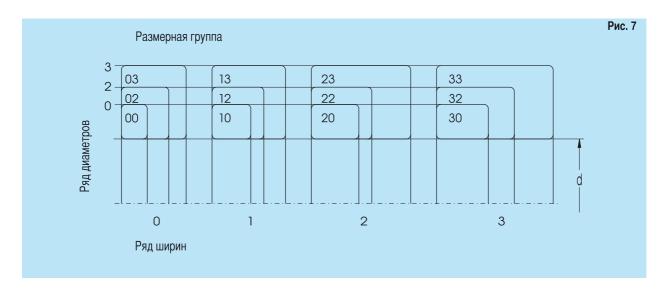
Влияние повышенной нагрузки проявляется прежде всего в случае подшипников более крупных размеров с долговечностью $L_{_{10\text{час}}}$ < 100000 часов, по которым нужно предусматривать снижение значений предельной частоты вращения.

Таким же образом необходимо корректировать значения предельной частоты вращения и в случае радиальных подшипников, которые подвергнуты относительно большим осевым усилием. Итоговое значение частоты вращения зависит от соотношения осевой и радиальной нагрузки F_a/F_r . Если $F_a/F_r > 0.6$, то рекомендуется прежде всего для двухрядных сферических шариковых подшипников, двухрядных сферических роликовых подшипников и однорядных конических роликовых подшипников проконсультировать вопрос значений предельной частоты вращения с поставщиком подшипников.

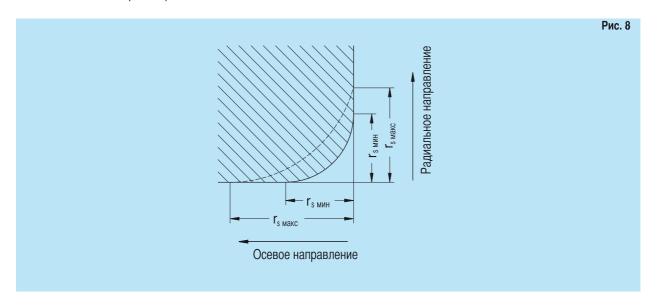
Указанную предельную частоту вращения возможно превысить по шариковым подшипникам даже 3-кратно, по цилиндрическим роликовым подшипникам 2-кратно, по остальным видам, кроме сферических и конических роликовых подшипников, даже 1,5-кратно, а по сферическим роликовым подшипникам 1,3-кратно.

Такое превышение как правило нуждается в:

- доработке смазки и охлаждения
- увеличении точности подшипника и соответственно точности сопрягаемых с подшипником деталей
- увеличении радиального зазора выше нормального
- сепараторе соответсвующей конструкции и материала


В таких случаях необходимо проконсультировать применение подшипника с ранее указанными специализированными отделами.

2. Данные о конструкции подшипников

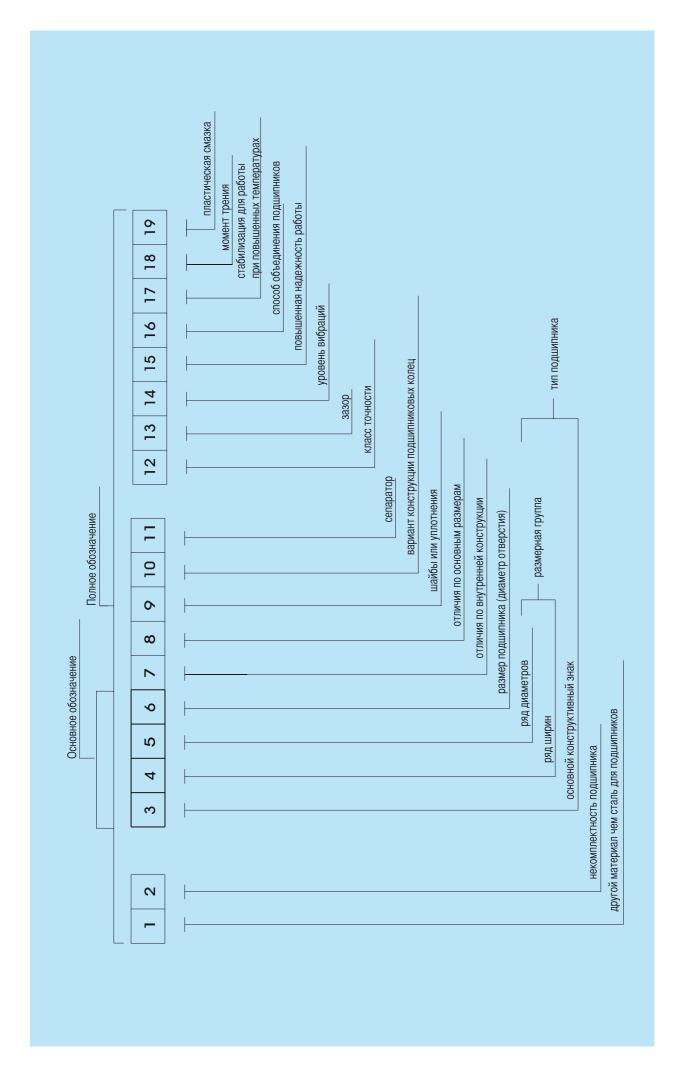

2.1 Основные размеры

Подшипники, указанные в настоящей публикации, выпускаются с размерами, которые отвечают международным стандартам ISO 15, ISO 355 и ISO 104.

В системе размеров подшипников принадлежит каждому диаметру отверстия подшипника \mathbf{d} несколько наружных диаметров \mathbf{D} и им соответствуют различные ширины \mathbf{B} или \mathbf{T} в части радиальных и \mathbf{H} в части упорных подшипников. Подшипники, которые имеют одинаковый диаметр отверстия и одинаковый наружный диаметр входят в один ряд диаметров, который обозначается по возрастающему наружному диаметру цифрами 7, 8, 9, 0, 1, 2, 3, 4. В каждом ряде диаметров имеются подшипники различных рядов ширины по возрастающему размеру ширины: 8, 0, 1, 2, 3, 4, 5, 6 по радиальным подшипникам и 7, 9, 1, 2 по упорным подшипникам. Ряды диаметров и ширин образуют размерную группу, которая обозначается двухзначной цифрой, в которой первая цифра обозначает ряд ширин, а вторая ряд диаметров как это видно на рис. 7.

В состав плана размеров входят также размеры радиусов закругления кромок подшипниковых колец, так называемых монтажных фасок, рис. 8.

продоль			жных фасок						Таблиц
		ые подш	ипники, кроме к	онических		кие роли	коподшипник	1	Упорные
r s мин	d или D		r _{s мак}	С	d или D			r _{s макс}	r _{s макс}
	свыше	до	в радиальном		свыше	до		м в осевом	в радиальном
			направлении	направлении			направлени	и направлении	и осевом направлени
ММ									
0,15	-	-	0,3	0,6	-	-	-	-	0,3
0,2	-	-	0,5	0,8	-	-	-	-	0,5
0,3	-	40	0,6	1	-	40	0,7	1,4	0,8
	40	-	0,8	1	40	-	0,9	1,6	0,8
0,6	-	40	1	2	-	40	1,1	1,7	1,5
	40	-	1,3	2	40	-	1,3	2	1,5
1	-	50	1,5	3	-	50	1,6	2,5	2,2
	50	-	1,9	3	50	-	1,9	3	2,2
1,1	-	120	2	3,5	-	-	-	-	2,7
	120	-	2,5	4	-	-	-	-	2,7
1,5	-	120	2,3	4	-	120	2,3	3	3,5
	120	-	3	5	120	250	2,8	3,5	3,5
	-	-	-	-	250	-	3,5	4	3,5
2	-	80	3	4,5	-	120	2,8	4	4
	80	220	3,5	5	120	250	3,5	4,5	4
	220	-	3,8	6	250	-	4	5	4
2,1	-	280	4	6,5	-	-	-	-	4,5
	280	-	4,5	7	-	-	-	-	4,5
2,5	-	100	3,8	6	-	120	3,5	5	-
	100	280	4,5	6	120	250	4	5,5	-
	280	-	5	7	250	-	4,5	6	-
3	-	280	5	8	-	120	4	5,5	5,5
	280	-	5,5	8	120	250	4,5	6,5	5,5
	-	-	-	-	250	400	5	7	5,5
	-	-	-	-	400	-	5,5	7,5	5,5
4	-	-	6,5	9	-	120	5	7	6,5
	-	-	-	-	120	250	5,5	7,5	6,5
	-			-	250	400	6	8	6,5
	-	-	-	-	400	-	6,5	8,5	6,5
5	-	-	8	10	-	180	6,5	8	8
	-	-	-	-	180	-	7,5	9	8
6	-	-	10	13	-	180	7,5	10	10
	-	-	-	-	180	-	9	11	10
7,5	-	-	12,5	17	-	-	-	-	12,5
9,5	-	-	15	19	-	-	-	-	15
12	-	-	18	24	-	-	-	-	18
15	_	-	21	30		-	-	-	21


2.2 Система обозначений

Система обозначений состоит из цифровых и буквенных знаков, которые определяют вид, размер и исполнение (модификацию) подшипника как это вытекает из схемы.

В основном исполнении подшипники обозначаются основным обозначением, которое состоит из обозначения типа и размера подшипника. Обозначение типа представляет собой как правило знак, отражающий конструкцию подшипника (позиция 3 схемы) и знак для размерной группы или ряд диаметров (позиция 4 и 5 схемы), например тип 223, 302, NJ22, 511, 62, 12 и т. п. Обозначение размера подшипника состоит из знаков для номинального диаметра отверстия **d** подшипника (позиция 6 схемы).

Подшипники с диаметром отверстия d < 10 мм:

Цифра, отделяемая знаком дроби или-же последняя цифра, представляет непосредственно номинальный размер отверстия в мм, например 619/2, 624.

Подшипники с диаметром отверстия d = 10 ... 17 мм

Двухзначная цифра	00 означает отверстие	d = 10 MM,	например 6200
	01	d = 12 MM,	например 51101
	02	d = 15 MM,	например 3202
	03	d = 17 MM,	например 6303

Исключением являются однорядные шариковые подшипники разъемные типа E и BO, по которым двухзначная цифра отражает непосредственно диаметр отверстия в мм, например E17.

Подшипники с диаметром отверстия d = 20 ... 480 мм

Диаметр отверстия равен пятикратному последних двух цифр, например подшипник 1320 имеет отверстие $d = 20 \times 5 = 100$ мм.

Исключением являются подшипники с отверстием d = 22, 28 и 32 мм, по которым двухзначная цифра, которая отделена знаком дроби, означает непосредственно диаметр отверстия в мм, например 320/32AX, а также разъемные однорядные шариковые подшипники типа E и однорядные цилиндрические роликовые подшипники типа NG, по которым двухзначная или трехзначная цифра означает непосредственно диаметр отверстия в мм, например E20, NG160 C4S0.

Подшипники с диаметром отверстия d ≥ 500 мм:

Последняя трехзначная или четырехзначная цифра, которая отделена знаком дроби, означает непосредственно диаметр отверстия в мм, например 230/530M, NU29/1060.

Подшипники, производимые с отличающимся от основного исполнением, обозначаются так называемым полным обозначением – как это представлено на схеме. Это обозначение состоит из основного обозначения и дополнительных знаков, которыми отражается отличие от основного исполнения.

Значение дополнительных знаков

В последущей части приведены, в соответствии с схемой полного обозначениия, обзор и значение используемых дополнительных знаков. (Цифра в скобке, которая указывается при каждой из групп, отвечает порядковому номеру позиции в схеме).

Дополнительные знаки впереди основного обозначения

Другой материал чем стандартная сталь для подшипников качения (1)

Х – нержавеющая сталь, например Х 623

Т – цементируемая сталь, например Т 32240

Некомплектость подшипника (2)

- отдельное съемное кольцо разъемного подшипника, например L NU206, по упорным шариковым подшипникам без тугого кольца, например L 51215
- R разъемный подшипник без съемного кольца, например R NU206 или R N310
- Е отдельное тугое кольцо упорного шарикового подшипника, например Е 51314
- W отдельное тугое колцо упорного шарикового подшипника, например W 51414
- К сепаратор с телами качения, например К NU320

Дополнительные знаки после основного обозначения Модификация внутренней конструкции (7)

- A однорядный шариковый подшипник радиально-упорный с углом контакта $\alpha = 25^{\circ}$, например B7205ATB P5
 - однорядный конический роликовый подшипник с повышенной грузоподъемностью и повышенной предельной частотой вращения, например 30206A
 - упорный шариковый подшипник с повышенной предельной частотой вращения, например 51105А
- AA- однорядный шариковый подшипник радиально-упорный с углом контакта $\alpha=26^{\circ}$, например B7210AATB P5
- В однорядный шариковый подшипник радиально-упорный с углом контакта $\alpha = 40^{\circ}$, например 7304В
 - однорядный конический роликовый подшипник с углом контакта $\alpha = 17^{\circ}$, например 32315B
- BE однорядный шариковый подшипник радиально-упорный с углом контакта $\alpha = 40^{\circ}$ по новому исполнению конструкции, например 7310BETNG

- C однорядный шариковый подшипник радиально-упорный с углом контакта α = 15°, например 7220CTB P4
 - двухрядный сферический роликовый подшипник в новом исполнении конструкции, например 22216С
- $CA OДНОРЯДНЫЙ ШАРИКОВЫЙ ПОДШИПНИК РАДИАЛЬНО-УПОРНЫЙ С УГЛОМ КОНТАКТА <math>\alpha = 12^{\circ}$, например B7202CATB P5
- CB- однорядный шариковый подшипник радиально-упорный с углом контакта $\alpha = 10^{\circ}$, например B7206CBTB P4
- СС двухрядный сферический роликовый подшипник с повышенной грузоподъемностью
- D однорядный шариковый подшипник типа 160 с повышенной грузоподъемностью, например 16004D
- Е однорядный цилиндрический роликовый подшипник с повышенной грузоподъемностью, например NU209E
 - двухрядный сферический роликовый подшипник с повышенной грузоподъемностью, например 22215E
 - упорный сферический роликовый подшипник с повышенной грузоподъемностью, например 29416E

Отличие по основным размерам (8)

 изменение основных размеров, введенных в результате новых международных стадартов, например 32028AX

Защитные шайбы (9)

- RS уплотнение на одной стороне, например 6304RS
- -2RS уплотнения на обеих сторонах, например 6204-2RS
- RSN уплотнение на одной стороне и канавка для стопорного кольца на наружном кольце на другой стороне чем уплотнение, например 6306RSN
- RSNB уплотнение на одной стороне и канавка для стопорного кольца на наружном кольце на той же стороне как и уплотнение, например 6210RSNB
- -2RSN уплотнения на обеих сторонах и канавка для стопорного кольца на наружном колце, например 6310-2RSN
- RSR уплотнение на одной стороне, прилегающее к гладкому борту внутреннего кольца, например 624RSR
- -2RSR уплотнения на обеих сторонах, прилегающие к гладким бортам внутреннего кольца, например 608-2RSR
- Z защитная шайба на одной стороне, например 6206Z
- -2Z защитная шайба на обеих сторонах, например 6304-2Z
- ZN защитная шайба на одной стороне и канавка для стопорного кольца на наружном кольце на другой стороне чем защитная шайба, например 6208ZN
- ZNB защитная щайба на одной стороне и канавка для стопорного кольца на наружном кольце на той же стороне как и защитная шайба, например 6306ZNB
- -2ZN защитные шайбы на обеих сторонах и канавка для стопорного кольца на наружном колце, например 6208-2ZN
- ZR защитная шайба на одной стороне, прилегающая к ладкому борту внутреннего кольца, например 608ZR
- -2ZR защитные шайбы на обеих сторонах, прилегающие к гладким бортам внутреннего кольца, например 608-2ZR

Модификация конструкции подшипниковых колец (10)

- К коническое отверстие, конусность 1 : 12, например 1207К
- К30 коническое отверстие, конусность 1:30, например 24064К30М
- N канавка для стопорного кольца на наружном кольце, например 6308N
- NR канавка для стопорного кольца на наружном кольце и вставленное стопорное кольцо, например 6310NR
- NX канавка для стопорного кольца на наружном кольце, размеры которой не отвечают STN 02 4605, например 6210NX
- разъемное внутреннее кольцо, например 3309D
- W33 канавка и смазочные отверстия на наружном диаметре наружного кольца, например 23148W33M
- Смазочные канавки на радиусе наружного кольца подшипника, например NU1014O

Сепараторы (11)

Материал сепаратора по подшипникам в основном исполнении как правило не указывается.

- листоштампованный стальной сепаратор, центрированный на телах качения, например 6034J
- J2 листоштампованный стальной сепаратор, с центровкой на телах качения. Новое исполнение конструкции однорядных конических роликовых подшипников, например 30206AJ2

- У листоштампованный латунный сепаратор с центровкой на телах качения, например 6001У
- F массивный стальной сепаратор с центровкой на телах качения, например 6418F
- массивный сепаратор из легкого металла с центровкой на телах качения, например NG180L C3S0
- М массивный сепаратор из латуни или бронзы с центровкой на телах качения, например NU330M
- Т массивный сепаратор из текстолита с центровкой на телах качения, например 6005Т
- TN массивный сепаратор из полиамида или аналогичной пластмассы с центровкой на телах качения, например 6207TN
- TNG массивный сепаратор из полиамида или аналогичной пластмассы с усилением стекловолокнами с центровкой на телах качения, например 2305TNG

Исполнение сепаратора (указанные знаки всегда используются в увязке с знаками материала сепаратора).

- А сепаратор с центровкой по наружному кольцу, например NU226MA
- В сепаратор с центровкой по внутреннему кольцу, например В7204САТВ Р5
- Р массивный сепаратор с «окошками», например NU1060MAP
- Н открытый сепаратор монолитный, например 629TNH
- S сепаратор с смазочными канавками, например NJ418MAS
- R сепаратор серебренный, например 6210MAR
- Подшипник без сепаратора с полным числом тел качения, например NU209V

Класс точности (12)

- Р0 нормальный класс точности (не обозначается), например 6204
- Р6 повышенный класс (выше нормального) точности, например 6322 Р6
- Р5 повышенный (выше Р6) класс точности, например 6201 Р5
- Р5А по отдельным параметрам повышенный (выше Р5), класс точности, например 6006ТВ Р5А
- Р4 повышенный (выше Р5) класс точности, например В7204СВТВ Р4
- Р4А по отдельным параметрам повышенный (выше Р5) класс точности, например В7205САТВ Р4А
- P2 повышенный (выше P4) класс точности, например B7200CBTB P2
- Р6Е повышенный класс точности подшипников для электрических вращающихся установок, например 6204 Р6Е
- Р6Х повышенный класс точности однорядных конических роликовых подшипников, например 30210А Р6Х
- SP повышенный класс точности цилиндрических роликовых подшипников с коническим отверстием, например NN3022K SPC2NA
- UP повышенный (выше SP) для цилиндрических роликовых подшипников с коническим отверстием, например N1016K UPC1NA

Зазоры (13)

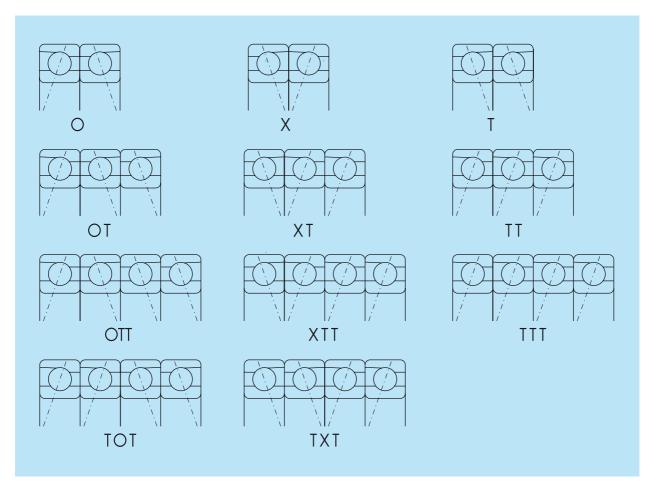
- С2 зазор ниже нормального, например 608 С2
 - нормальный зазазор (не означается), например 6204
- СЗ зазор больше нормального, например 6310 СЗ
- С4 зазор больше, чем С3, например NU320M С4
- С5 зазор больше, чем С4, например 22330М С5
- NA радиальный зазор по подшипникам с незаменимыми кольцами (указывается всегда после знака группы радиального зазора), например NU 215 P63NA
- R... радиальный зазор в нестандартизованном диапазоне (диапазон в мкм), например 6210 R10-20
- А... осевая игра в нестандартизованном диапазоне (диапазон в мкм), например 3210 A20-30

Уровень вибарций (14)

- С6 пониженный (ниже стандартного) уровень вибраций (не обозначается), например 6304 С6
- С06 пониженный (ниже С6) уровень вибраций, например 6205 С06
- С66 пониженный (ниже С06) уровень вибраций, например 6205 С66

Конкретные величины для С06 и С66 определяются на основании переговоров заказчика с поставщиком.

Примечание: Подшипники по классу точности Р5 и выше имеют уровень вибраций по классу С6.


Повышенная надежность работы (15)

С7, С8, С9 — подшипники с повышенной надежностью работы, предназначенные прежде всего для применения в авиационной промышленности, например 6008M8 P68

Соединение знаков (12-15)

Знаки класса точности, зазора в подшипнике, уровня вибраций, и повышенной надежности работы соединяются при одновременном исключении знака С для второго и последующих специальной характеристике подшипников, например:

P6 + C3 = P63 P6 + C8 = P68 C3 + C6 = C36 P5 + C3 + C9 = P539 P6 + C2NA + C6 = P626NA например 6211 P63 например 16002 P68 например 6203-2RS C36 например 6205MA P539 например NU1038 P626NA

Соединение подшипников (16)

Обозначение сдвоенной пары, трех или четырех подшипников состоит со знаков, отражающих расположение подшипников и со знаков, определяющих внутренний зазор, или преднапряжение сдвоенных подшипников.

Кроме знаков, указанных в таблице, применяется знак U, которым обозначается то, что соответствующие подшипники возможно универсально соединять, пример обозначения B7003CTA P4UL.

Внутренний зазор или натяг

Указанные знаки всегда используются в сочетании со знаками соединения.

- А соединение подшипников с зазором, например 7305ОА
- О соединение подшипников без зазора, например 7305 Р6ХО
- L соединение подшипников с малым натягом, например B7205CATB P4UL
- М соединение подшипников со средним натягом, например В7204САТВ Р5ХМ
- S соединение подшипников с большим натягом, например B7304AATB P40S

Стабилизация для работы при повышенной температуре (17)

Обе кольца имеют стабилизированные размеры для работы при повышенной температуре.

S0 – для работы при температуре	до 150°С
S1	до 200°C
S2	до 250°С
S3	до 300°C
S4	до 350°С
S5	до 400°C

Пример обозначения NG160LB C4S3.

Момент трения (18)

- JU пониженный момент трения, например 619/2 JU
- JUA подшипники с установленным моментом трения при разгоне, например 632 JUA
- JUB подшипники с установленным моментом трения при выбегу, например 623 JUB

Пластическая смазка (19)

Для подшипников с защитными шайбами или уплотнениями на обеих сторонах для обозначения использованной пластической смазки иной, чем нормально, используются дополнительные знаки. Первые два знака определяют рабочие температуры смазки, а третий знак (буква) название или-же тип смазки в соответствии с инструкцией изготовителя, последующий знак /цифра/ определяет объем пластической смазки, которым заполнено пространство подшипника.

- TL смазка для низких температур работы с 60° C до $+100^{\circ}$ C, пример обозначения 6302-2RS TL
- TM смазка для средних температур работы с 35°С до +140°С, пример обозначения 6204-2ZR TM
- TH смазка для высоких температур работы с 30°С до + 200°С, пример обозначения 6202-2Z TH
- TW смазка для низких и высоких температур работы с 40°C до +150°C, пример обозначения 6310-2Z C4TW Примечание: Знак TM не нужно указывать на подшипниках и на упаковке.

Подшипники по специальным техническим требованиям

- Подшипники, производимые по специальным техническим условиям, согласованным с заказчиком, например подшипник 6205MA P66 по техническим условиям TPF 11142-71 означается 6205MA P66 TPF142
- ТРF99 двухрядный сферический подшипник для букс железнодорожных подвижных составов, например 23234
 СЗ ТРF99
- TPF204 однорядный шариковый подшипник для колес печных тележек и т. п., например 6308 TPF204
- ТРЕК... подшипники по специальным техническим условиям, согласованным с заказчиком, по которым имеется большое число знаков, отражающих отличия от основного исполнения.

В таком случае указывается обозначение TPF..., например подшипник NU1015, производимый по техническим условиям TPFK 11137-70, обозначается NU1015 TPFK137.

Подшипники по специальным конструкторским чертежам PLC

PLC A-BC-DE-F структура обозначения

PLC – знак для специального подшипника качения

конструктивная группа

- 0 однорядные шариковые подшипники
- 1 двухрядные шариковые подшипники
- 2 упорные шариковые подшипники
- 3 не занято
- 4 однорядные цилиндрические, сферические и игольчатые роликовые подшипники
- 5 двухрядные и многорядные цилиндрические, сферические и игольчатые роликовые подшипники
- 6 однорядные, двухрядные и четырехрядные конические роликовые подшипники
- 7 специальные двухрядные подшипники
- 8 сборочные узлы и отдельные (самостоятельные) части
- 9 упорные цилиндрические, сферические, конические и игольчатые роликовые подшипники
- ВС размерная группа два численных знака
- DE порядковый номер в размерной группе два численных знака
- отличие исполнения один численный знак.

2.3 Точность подшипников

Точностью подшипников понимается точность их размеров и хода. Подшипники производятся по классам точности P0, P6, P5, P5A, P4, P4A, P2, SP и UP.

Точность РО – основной класс точности. При этом снижающаяся цифра в обозначении значит повышающийся класс точности подшипника. Предельные величины для точности размеров и хода, которые указаны в таблицах 20 - 30, соответствуют стандарту ISO 492 и ISO 199 (STN 02 4612). Обозначение P5A и P4A применяется для подшипников, которые изготовлены по соответсвующему классу точности (Р5, Р4), однако отдельные параметры имеют выше класс точности, чем Р5 и Р4.

Символы величин и их значение

номинальный лиамет	

d₁ номинальный размер большего теоретического диаметра конического отверстия

 d_{2} номинальный диаметр тугого кольца двойных упорных подшипников

 $\Delta \mathsf{d}_{\mathsf{a}}$ отклонение конкретного диаметра отверстия от номинального диаметра

 $\Delta_{\rm dmp}$ отклонение среднего диаметра цилиндрического отверстия в конкретной радиальной плоскости (в случае конического отверстия Δ_{dmp} относится к теоретическому диаметру конического отверстия)

отклонение среднего большего теоретического диаметра конического отверстия $\Delta_{\rm d1mp}$

 $\Delta_{\rm d2mp}$ отклонение среднего диаметра отверстия тугого кольца двойных упорных подшипников в конкретной радиальной плоскости

 $V_{dp} V_{dmp}$ непостоянство конкретного диаметра отверстия в конкретной радиальной плоскости

непостоянство среднего диаметра цилиндрического отверстия

непостоянство диаметра отверстия тугого кольца двойных упорных подшипников в конкретной радиальной плоскости

D номинальный наружный диаметр

 $\Delta_{ extsf{De}}$ отклонение конкретного наружного диаметра от номинального размера

отклонение среднего диаметра наружной цилиндрической в конкретной радиальной плоскости Δ_{Dmp}

 V_{Dp} непостоянство конкретного диаметра наружной цилиндрической поверхности в конкретной радиальной плоскости

 V_{Dmp} непостоянство среднего диаметра наружной цилиндрической поверхности

В номинальная ширина внутреннего кольца

Τ номинальная полная ширина конических роликовых подшипников

 $\mathsf{T}_{\scriptscriptstyle{1}}$ номинальная эффективная ширина внутреннего подузла T₂ номинальная эффективная ширина наружного подузла отклонение конкретной ширины внутреннего кольца отклонение конкретной ширины наружного кольца $\Delta_{\rm Ts}$ отклонение (полной) конкретной ширины подшипника отклонение эффективной ширины внутреннего узла $\Delta_{\sf T1s}$

 Δ_{T2s} C V_{Bs} отклонение эффективной ширины наружного подузла номинальная ширина наружного кольца непостоянство конкретной ширины внутреннего кольца V_{Cs} K_{ia} K_{ea} S_i S_{ea} S_d S_D S_s непостоянство конкретной ширины наружного кольца радиальное биение внутреннего кольца собранного кольца радиальное биение наружного кольца собранного кольца осевое биение дорожки качения тугого кольца осевое биение дорожки качения свободного кольца осевое биение базового торца внутреннего кольца собранного подшипника осевое биение базового торца наружного кольца собранного подшипника осевое биение базового торца биение наружной цилиндрической поверхности относительно торца кольца биение опорного торца внутреннего кольца относительно базового торца по однорядным коническим роликовым подшипникам

Внутрен	інее кол	пьцо														
			 ндричесі	кое отв	верстие								Конич	еское от	верстие	
d		$\Delta_{ ext{dmp}}$		V _{dp} разм 7,8,9	ерные 0,1	ряды 2,3,4	$V_{\rm dmp}$	K _{ia}	Δ_{Bs}		V _{Bs}	$\Delta_{ ext{dmp}}$		$\Delta_{ ext{d1mp}}$	$-\Delta_{ ext{dmp}}$	V ¹⁾ _{dp}
свыше	до	макс	МИН		макс	макс	макс	макс	макс	МИН	макс	макс	МИН	макс	МИН	макс
ММ		MKM														
2,5	10	0	-8	10	8	6	6	10	0	-120	15	-	-	-	-	-
10	18	0	-8	10	8	6	6	10	0	-120	20	-	-	-	-	-
18	30	0	-10	13	10	8	8	13	0	-120	20	+21	0	+21	0	13
00	50	0	40	45	40	0	0	45	0	400	00	0.5	^	0.5	0	45
30	50	0	-12	15	12	9	9 11	15	0	-120	20	+25	0	+25	0	15
50 80	100	0	-15 -20	19 25	19 25	11 15	15	20 25	0	-150	25 25	+30	0	+30	0	19 25
80	120	U	-20	20	25	10	15	20	0	200	23	+33	U	+35	U	25
120	180	0	-25	31	31	19	19	30	0	-250	30	+40	0	+40	0	31
180	250	0	-30	38	38	23	23	40	0	-300	30	+46	0	+46	0	38
250	315	0	-35	44	44	26	26	50	0	-350	35	+52	0	+52	0	44
	0.0			•	• •					000		.02		.02	Ŭ	• •
315	400	0	-40	50	50	30	30	60	0	-400	40	+57	0	+57	0	50
400	500	0	-45	56	56	34	34	65	0	-450	50	+63	0	+63	0	56
500	630	0	-50	63	63	38	38	70	0	-500	60	-	-	-	-	-
630	800	0	-75	-	-	-	-	80	0	-750	70	-	-	-	-	-
800	1000	0	-100	-	-	-	-	90	0	-1000	80	-	-	-	-	-
1000	1250	0	-125	-	-	-	-	100	0	-1250	100	-	-	-	-	-

)		Δ_{Dmp}		V _{DP}				V_{Dmp}	K _{ea}	$\Delta_{ t Cs}$	
				разме 7,8,9	рные ря 0,1	ады 2,3,4	подшипники ²⁾ с шайбами				
свыше	до	макс	МИН	макс	макс	макс	макс	макс	макс		
MM		MKM									
C	18	0	0	10	0	e	10	G	15		
6 18	30	0	-8 -9	12	8 9	6 7	12	6 7	15		
30	50	0	-11	14	11	8	16	8	20		
30	50	U	-11	14	- 11	0	10	0	20		
50	80	0	-13	16	13	10	20	10	25		
80	120	0	-15	19	19	11	26	11	35		
120	150	0	-18	23	23	14	30	14	40		
150	180	0	-25	31	31	19	38	19	45		Соответствует
180	250	0	-30	38	38	23	-	23	50		Δ_{Bs},V_{Bs}
250	315	0	-35	44	44	26	-	26	60		Внутреннего кольца такого же
											подшипника
315	400	0	-40	50	50	30	-	30	70		
400	500	0	-45	56	56	34	-	34	80		
500	630	0	-50	63	63	38	-	38	100		
630	800	0	-75	94	94	55	-	55	120		
800	1000	0	-100	125	125	75	-	75	140		
1000	1250	0	-125	-	-	-	-	-	160		
1250	1600	0	-160	-	-	-	-	-	190		

Точност Класс то			хода ра	адиалы	ных по	дшипн	іиков (кроме	кониче	ских ролі	иковых)	Таблица 1
Внутрен	нее кол	пьцо										
d		Δ_{dmp}			рные р 0, 1		1	K _{ia}	Δ Bs		V_{Bs}	
свыше	до	макс	МИН	макс		макс		макс	макс	МИН	макс	
ММ		МКМ										
					_							
2,5	10	0	-7	9	7	5	5	6	0	-120	15	
10	18	0	-7	9	7	5	5	7	0	-120	20	
18	30	0	-8	10	8	6	6	8	0	-120	20	
30	50	0	-10	13	10	8	8	10	0	-120	20	
50	80	0	-12	15	15	9	9	10	0	-150	25	
80	120	0	-15	19	19	11	11	13	0	-200	25	
120	180	0	-18	23	23	14	14	18	0	-250	30	
180	250	0	-22	28	28	17	17	20	0	-300	30	
250	315	0	-25	31	31	19	19	25	0	-350	35	
200	010	J	20	UI	UI	10	13	20	U	000	00	
315	400	0	-30	38	38	23	23	30	0	-400	40	
400	500	0	-35	44	44	26	26	35	0	-450	45	
500	630	0	-40	50	50	30	30	40	0	-500	50	

)		Δ_{Dmp}		V _{Dp} разме 7, 8, 9	рные ря 0, 1		4 подшипники с шайбами	V _{Dmp}	K _{ea}	$\Delta_{_{\mathrm{Cs}}}V_{_{\mathrm{Cs}}}$
выше	до	макс	МИН	макс	макс	макс	макс	макс	макс	
ММ		MKM								
			_		_	_		_		
6	18	0	-7	9	7	5	9	5	8	
18 30	30 50	0	-8 -9	10 11	8 9	6 7	10 13	6 7	9 10	
30	50	U	-9	11	9	1	13	1	10	
50	80	0	-11	14	11	8	16	8	13	
80	120	0	-13	16	16	10	20	10	18	
120	150	0	-15	19	19	11	25	11	20	
										Соответствует
150	180	0	-18	23	23	14	30	14	23	Δ_{Bs},V_{Bs}
180	250	0	-20	25	25	15	-	15	25	внутреннего кольца такого же
250	315	0	-25	31	31	19	-	19	30	подшипника
015	400	0	00	0.5	0.5	04		04	0.5	
315 400	400 500	0	-28 -33	35 41	35 41	21 25	-	21 25	35 40	
500	630	0	-38	48	48	29	-	29	50	
300	030	U	-50	40	40	23		23	30	
630	800	0	-45	56	56	34	-	34	60	
800	1000	0	-50	75	75	45	-	45	75	

Точност Класс то			да радиа	льных по	одшипников (і	кроме ко	нических	роликов	вых)			Таблица 12
Внутрен	нее ко	льцо										
d		$\Delta_{ ext{dmp}}$		V _{dp} размер 7, 8, 9	ные ряды 0, 1, 2, 3, 4	$V_{\rm dmp}$	K _{ia}	S _d	S _{ia} 1)	Δ_{Bs}		V _{Bs}
свыше	до	макс	МИН	макс	макс	макс	макс	макс	макс	макс	МИН	макс
ММ		МКМ										
٥٢	10	0	_	-	4	0	4	7	7	0	40	_
2,5	10 18	0	-5	5 5	4	3	4	7 7	7 7	0	-40	5
10 18	30	0	-5 -6	6	4 5	3	4	8	8	0	-80 -120	5 5
10	30	U	-0	0	3	3	4	0	0	U	-120	o O
30	50	0	-8	8	6	4	5	8	8	0	-120	5
50	80	0	-9	9	7	5	5	8	8	0	-150	6
80	120	0	-10	10	8	5	6	9	9	0	-200	7
120	180	0	-13	13	10	7	8	10	10	0	-250	8
180	250	0	-15	15	12	8	10	11	13	0	-300	10
250	315	0	-18	18	14	9	13	13	15	0	-350	13
315	400	0	-23	23	18	12	15	15	20	0	-400	15

D		Δ_{Dmp}		V _{dp} размер 7, 8, 9	ные ряды ²⁾ 0, 1, 2, 3, 4	V _{Dmp}	K _{ea}	$S_{_{\mathrm{D}}}$	S _{ea} 1)	$\Delta_{ t Cs}$	V _{Cs}
выше	до	макс	МИН	макс	макс	макс	макс	макс	макс		макс
ММ		МКМ									
6	18	0	-5	5	4	3	5	8	8		5
18	30	0	-6	6	5	3	6	8	8		5
30	50	0	-7	7	5	4	7	8	8		
							·		, ,		
50	80	0	-9	9	8	5	8	8	10		
80	120	0	-10	10	8	5	10	9	11	Соответствует	8
120	150	0	-11	11	8	6	11	10	13	$\Delta_{ extsf{Bc}}$	
										внутреннего	
150	180	0	-13	13	10	7	13	10	14	кольца такого же	
180	250	0	-15	15	11	8	15	11	15	подшипника	10
250	315	0	-18	18	14	9	18	13	18		
0.45	400	•	00	00		40	00	40	00		
315	400	0	-20	20	15	10	20	13	20		4.5
400	500	0	-23	23	17	12	23	15	23		15
500	630	0	-28	28	21	14	25	18	25		
620	900	0	25	25	26	10	20	20	20		
630	800	0	-35	35	26	18	30	20	30		

1) Действительно лишь для шариковых подшипников 2) Недействительно для подшипников с шайбами

		змеров сти Р4	и хода	радиал	ьных по	дшипни	ков (кроме кон	нических р	ооликов	ых)			Та	блица 13
Внутр	еннее	кольцо												
d		$\Delta_{ ext{dmp}}$		$\Delta_{ m ds}^{-1)}$		V _{dp} разме 7, 8, 9	рные ряды 0, 1, 2, 3, 4	V_{dmp}	K _{ia}	S _d	S _{ia} ²⁾	Δ_{Bs}		V _{Bs}
свыше	до	макс	МИН	макс	МИН	макс	макс	макс	макс	макс	макс	макс	МИН	макс
ММ		МКМ												
2,5	10	0	-4	0	-4	4	3	2	2,5	3	3	0	-40	2,5
10	18	0	-4	0	-4	4	3	2	2,5	3	3	0	-80	2,5
18	30	0	-5	0	-5	5	4	2,5	3	4	4	0	-120	2,5
30	50	0	-6	0	-6	6	5	3	4	4	4	0	-120	3
50	80	0	-7	0	-7	7	5	3,5	4	5	5	0	-150	4
80	120	0	-8	0	-8	8	6	4	5	5	5	0	-200	4
120	180	0	-10	0	-10	10	8	5	6	6	7	0	-250	5
180	250	0	-12	0	-12	12	9	6	8	7	8	0	-300	6

Наруж	ноее к	ольцо											
D		Δ_{Dmp}		V _{Ds1)}			оные ряды ³⁾ 0, 1, 2, 3, 4	V_{Dmp}	K _{ea}	S _D	S _{ea} ²⁾	$\Delta_{ extsf{Cs}}$	V _{Cs}
свыше	до	макс	МИН	макс	МИН	макс	макс	макс	макс	макс	макс		макс
ММ		МКМ											
6	18	0	-4	0	-4	4	3	2	3	4	5		2,5
18	30	0	-5	0	-5	5	4	2,5	4	4	5		
30	50	0	-6	0	-6	6	5	3	5	4	5		2,5 2,5
50	80	0	-7	0	-7	7	5	3,5	5	4	5		3
80	120	0	-8	0	-8	8	6	4	6	5	6	Соответствует	4
120	150	0	-9	0	-9	9	7	5	7	5	7	Δ_{Bs}	5
150	180	0	-10	0	-10	10	8	5	8	5	8	внутреннего кольца	5
180	250	0	-11	0	-11	11	8	6	10	7	10	такого же	7
250	315	0	-13	0	-13	13	10	7	11	8	10	подшипника	7
315	400	0	-15	0	-15	15	11	8	13	10	13		8

¹⁾ Действительно лишь для подшипников размерных рядов 0, 1, 2, 3 и 4 2) Действительно лишь для шариковых подшипников 3) Не действительно для подшипников с шайбами

Точность размеров и хода радиальных подшипников (кроме конических роликовых) Класс точности SP

Таблица 14

Внутреннее кольцо

d свыше	до	$\Delta_{ ext{dmp}}$ Makc	мин	$\Delta_{_{ ext{d1mp}}}$ Makc	- $\Delta_{ m dmp}$	V _{dp} макс	К _{іа} макс	S _d макс	$\Delta_{ extsf{Bs}}$ макс	МИН	V _{Bs} Makc
ММ		MKM									
18	30	+10	0	+4	0	3	3	8	0	-100	5
30	50	+12	0	+4	0	4	4	8	0	-120	5
50	80	+15	0	+5	0	5	4	8	0	-150	6
80	120	+20	0	+6	0	5	5	9	0	-200	7
120	180	+25	0	+8	0	7	6	10	0	-250	8
180	250	+30	0	+10	0	8	8	11	0	-300	10
250	315	+35	0	+12	0	9	10	13	0	-350	13
315	400	+40	0	+13	0	12	12	15	0	-400	15
400	500	+45	0	+15	0	14	12	18	0	-450	25

выше	до	$\Delta_{ m Dmp}$ Makc	мин	V _{Dp} макс	К _{еа} макс	S _D макс	$\Delta_{_{\mathrm{Cs}}},V_{_{\mathrm{Cs}}}$
ΜМ		МКМ					
50	80	0	-9	5	5	8	
80	120	0	-10	5	6	9	
120150	0	-11	6	7	10	3	
20100	Ū			,	10		Соответствует
150	180	0	-13	7	8	10	Δ_{Bs} и V_{Bs}
180	250	0	-15	8	10	11	внутреннего
250	315	0	-18	9	11	13	кольца такого же
							подшипника
315	400	0	-20	10	13	13	
400	500	0	-23	12	15	15	
500	630	0	-28	14	17	18	
COO	000	0	0.5	10	00	00	
630	800	0	-35	18	20	20	

Точность размеров и хода цилиндрических роликовых подшипников с коническим отверстием Класс точности UP Внутреннее кольцо												
d свыше	до	$\Delta_{ ext{dmp}}$ Makc	мин	$\Delta_{ extsf{d1mp}}$ Makc	- $\Delta_{ m dmp}$ МИН	V _{dp} макс	К _{іа} макс	S _d макс	$\Delta_{_{\mathrm{Bs}}}$ макс	мин	V _{Bs} макс	
ММ		MKM										
18	30	+6	0	+2	0	3	1,5	3	0	-25	1,5	
30	50	+7	0	+3	0	3	2	3	0	-30	2	
50	80	+8	0	+3	0	4	2	4	0	-40	3	
80	120	+10	0	+4	0	4	3	4	0	-50	3	
120	180	+12	0	+5	0	5	3	5	0	-60	4	
180	250	+14	0	+6	0	6	4	6	0	-75	5	
250	315	+17	0	+8	0	8	5	6	0	-90	6	

Нарух	кноее к	ольцо					
СВЫШ	е до	Δ _{Dmp} Makc	МИН	V _{Dp} макс	К _{еа} макс	S _D макс	$\Delta_{ extsf{Cs}}$, $V_{ extsf{Cs}}$
ММ		MKM					
50	80	0	-6	3	3	2	
80	120	0	-7	4	3	3	
120	150	0	-8	4	4	3	Соответствует
							Δ_{Bs} a V_{Bs}
150	180	0	-9	5	4	3	внутреннего
180	250	0	-10	5	5	4	кольца такого-же
250	315	0	-12	6	6	4	подшипника
315	400	0	-14	7	7	5	

Точность размеров и хода конических роликовых подшипников Класс точности Р0 Внутреннее кольцо и общая ширина подшипника													
	$\Delta_{ ext{dmp}}$		V _{dp}	V _{dmp}	K _{ia}	Δ_{Bs}		Δ_{Ts}		Δ _{T1s}		Δ_{T2s}	
до	макс	мин	макс	макс	макс	макс	мин	макс	мин	макс	МИН	макс	МИН
	MKM												
40	0	40	40	0	45	0	400	000	0	400	0	400	^
	-			-		-			-				0
30	0	-12	12	9	18	0	-120	+200	0	+100	0	+100	0
50	0	-12	12	9	20	0	-120	+200	0	+100	0	+100	0
80	0	-15	15	11	25	0	-150	+200	0	+100	0	+100	0
120	0	-20	20	15	30	0	-200	+200	-200	+100	-100	+100	-100
180	0	-25	25	19	35	0	-250	+350	-250	+150	-150	+200	-100
250	0	-30	30	23	50	0	-300	+350	-250	+150	-150	+200	-100
	до 18 30 50 80 120 180	лочности РО ннее кольцо и До Мкм Мкм 18 0 30 0 50 0 80 0 120 0 180 0	лочности РО ннее кольцо и общая До Макс мин МКМ 18 0 -12 30 0 -12 50 0 -12 80 0 -15 120 0 -20 180 0 -25	точности РО ннее кольцо и общая ширина До Макс Мин Макс МКМ 18 0 -12 12 30 0 -12 12 50 0 -12 12 80 0 -15 15 120 0 -20 20 180 0 -25 25	лочности РО ннее кольцо и общая ширина подшиг до Макс мин Макс Макс МКМ 18 0 -12 12 9 30 0 -12 12 9 50 0 -12 12 9 50 0 -12 12 9 80 0 -15 15 11 120 0 -20 20 15 180 0 -25 25 19	мкм 18 0 -12 12 9 15 30 0 -12 12 9 18 50 0 -12 12 9 20 80 0 -15 15 11 25 120 0 -20 20 15 30 180 0 -25 25 19 35	точности РО ннее кольцо и общая ширина подшипника До Макс мин Макс Макс Макс Макс Макс Макс Макс Макс	точности РО ннее кольцо и общая ширина подшипника До Макс мин Макс Макс Макс Макс Макс Мин МКМ 18 0 -12 12 9 15 0 -120 30 0 -12 12 9 18 0 -120 50 0 -12 12 9 20 0 -120 80 0 -15 15 11 25 0 -150 120 0 -20 20 15 30 0 -200 180 0 -25 25 19 35 0 -250	Почности РО ннее кольцо и общая ширина подшипника До Макс мин Макс Макс Макс Макс Макс Мин Макс МКМ 18 0 -12 12 9 15 0 -120 +200 30 0 -12 12 9 18 0 -120 +200 50 0 -12 12 9 20 0 -120 +200 50 0 -15 15 11 25 0 -150 +200 120 0 -20 20 15 30 0 -200 +200 180 0 -25 25 19 35 0 -250 +350	Почности РО ннее кольцо и общая ширина подшипника До Макс мин Макс Макс Макс Макс Макс Мин Макс Мин МКМ 18 0 -12 12 9 15 0 -120 +200 0 30 0 -12 12 9 18 0 -120 +200 0 50 0 -12 12 9 20 0 -120 +200 0 50 0 -12 12 9 30 0 -120 +200 0 120 0 -20 20 15 30 0 -200 +200 -200 180 0 -25 25 19 35 0 -250 +350 -250	ТО ННОЕ КОЛЬЦО И ОБЩАЯ ШИРИНА ПОДШИПНИКА ДО МАКС МИН МАКС МАКС МАКС МАКС МИН МАКО	Почности РО ннее кольцо и общая ширина подшипника До Макс мин Макс Макс Макс Макс Мин Макс	ТО ННОЕТИ РО ННЕЕ КОЛЬЦО И ОБЩАЯ ШИРИНА ПОДШИПНИКА ДО МАКС МИН МАКС МАКС МАКС МАКС МИН МАК

Наружн	юее ко	льцо						
D свыше	до	$\Delta_{ extsf{Dmp}}$ макс	МИН	V _{Dp} Makc	V _{Dmp} Makc	К _{еа} макс	∆ _{Сs} макс	МИН
ММ		МКМ						
18	30	0	-12	12	9	18	0	-120
30	50	0	-14	14	11	20	0	-120
50	80	0	-16	16	12	25	0	-150
80	120	0	-18	18	14	35	0	-200
120	150	0	-20	20	15	40	0	-250
150	180	0	-25	25	19	45	0	-250
180	250	0	-30	30	23	50	0	-300
250	315	0	-35	35	26	60	0	-350
315	400	0	-40	40	30	70	0	-400

Класс т	Точность размеров и хода конических роликовых подшипников Таблица 17 Класс точности Р6Х Внутреннее кольцо и общая ширина подшипника													
d свыше	до	$\Delta_{ m dmp}$ Makc	МИН	V _{dp} макс	V _{dmp} Makc	К _{іа} макс	$\Delta_{ extsf{Bs}}$ макс	МИН	Δ _{Ts} макс	мин	$\Delta_{_{ m T1s}}$ макс	МИН	Δ _{T2s} макс	мин
ММ		MKM												
10	18	0	-12	12	9	15	0	-50	+100	0	+50	0	+50	0
18	30	0	-12	12	9	18	0	-50	+100	0	+50	0	+50	0
30	50	0	-12	12	9	20	0	-50	+100	0	+50	0	+50	0
50	80	0	-15	15	11	25	0	-50	+100	0	+50	0	+50	0
80	120	0	-20	20	15	30	0	-50	+100	0	+50	0	+50	0
120	180	0	-25	25	19	35	0	-50	+150	0	+50	0	+100	0

Наруж	ноее ко	льцо						
D свыше	до	$\Delta_{ extstyle Dmp}$ макс	мин	V _{Dp} макс	V _{Dmp} Makc	К _{еа} макс	$\Delta_{ t Cs}$ макс	МИН
ММ		МКМ						
18	30	0	-12	12	9	18	0	-100
30	50	0	-14	14	11	20	0	-100
50	80	0	-16	16	12	25	0	-100
80	120	0	-18	18	14	35	0	-100
120	150	0	-20	20	15	40	0	-100
150	180	0	-25	25	19	45	0	-100
180	250	0	-30	30	23	50	0	-100
250	315	0	-35	35	26	60	0	-100

Класс точ	очность размеров и хода конических роликовых подшипников Т ласс точности Р6 нутреннее кольцо и общая ширина подшипника										
d		$\Delta_{ ext{dmp}}$		K _{ia}	Δ_{Bs}		Δ_{Ts}				
свыше	до	макс	МИН	макс	макс	МИН	макс	МИН			
ММ		МКМ									
10	18	0	-7	7	0	-200	+200	0			
18	30	0	-8	8	0	-200	+200	0			
30	50	0	-10	10	0	-240	+200	0			
50	80	0	-12	10	0	-300	+200	0			
80	120	0	-15	13	0	-400	+200	-200			
120	180	0	-18	18	0	-500	+350	-250			

Наружноее	кольцо				
D свыше	до	$\Delta_{ extstyle Dmp}$ Makc	мин	К _{еа} макс	$\Delta_{ t Cs}$
ММ		МКМ			
18	30	0	-8	9	
30	50	0	-9	10	
50	80	0	-11	13	Соответствует Δ_{Bs}
					внутреннего
80	120	0	-13	18	кольца такого же
120	150	0	-15	20	подшипника
150	180	0	-18	23	
180	250	0	-20	25	
250	315	0	-25	30	

Точность размеров и хода конических роликовых подшипников Класс точности Р5 Внутреннее кольцо и общая ширина подшипника													
d Δ_{dmp} V_{dp} V_{dmp} K_{ia} S_d Δ_{Bs} Δ_{Ts}													
свыше	до	макс	МИН	макс	макс	макс	макс	макс	МИН	макс	МИН		
ММ		МКМ											
10	18	0	-7	5	5	5	7	0	-200	+200	-200		
18	30	0	-8	6	5	5	8	0	-200	+200	-200		
30	50	0	-10	8	5	5	8	0	-240	+200	-200		
50	80	0	-12	9	6	7	8	0	-300	+200	-200		
80	120	0	-15	11	8	8	9	0	-400	+200	-200		
120	180	0	-18	14	9	11	10	0	-500	+350	-250		

	кноее кол	вцо						
СВЫШ	е до	Δ _{Dmp} макс	мин	V _{Dp} макс	V _D макс	К _{еа} макс	S _D makc	$\Delta_{ t Cs}$
ММ		МКМ						
MM 18 30 50 80 120 150 180 250	30 50 80 120 150 180 250 315	MKM 0 0 0 0 0 0 0 0 0	-8 -9 -11 -13 -15 -18 -20 -25	6 7 8 10 11 14 15 19	5 5 6 7 8 9 10 13	6 7 8 10 11 13 15 18	8 8 8 9 10 10 11 13	Соответствует $\Delta_{_{\mathrm{Bs}}}$ внутреннего кольца такого же подшипника

d_2		$\Delta_{ ext{dmp}}$		V _{dp} V _{d2p}	S _i P0	P6	1) P5
о ₂ СВЫШЕ	до	$\Delta_{ ext{d2mp}}^{ ext{d3mp}}$ MakC	мин	Makc	макс	макс	макс
ММ		МКМ					
-	18	0	-8	6	10	5	3
18	30	0	-10	8	10	5	3
30	50	ő	-12	9	10	6	3
50	80	0	-15	11	10	7	4
80	120	0	-20	15	15	8	4
120	180	0	-25	19	15	9	5
180	250	0	-30	23	20	10	5
250	315	0	-35	26	25	13	7
315	400	0	-40	30	30	15	7
400	500	0	-45	34	30	18	9
500	630 800	0	-50 -75	38	35 40	21 25	11 13

) :выше	до	$\Delta_{ extstyle extstyle $	мин	V _{Dp} макс	S _e 1)
1M		MKM			
18	30	0	-13	10	
30	50	0	-16	12	
50	80	0	-19	14	
80	120	0	-22	17	
120	180	0	-25	19	
180	250	0	-30	23	
250	315	0	-35	26	Соответствует
315	400	0	-40	30	S _і тугого кольца
					такого же подшипника
					ПОДШИППИКа
630	800	0	-75	55	
250	1600	0	-160	-	
) Не относится	я к упорным сферическ	им ропиковым полици	пникам		
,	, ,	рестипательной дент			

2.4 Внутренний зазор

Зазор в подшипнике качения представляет собой размер величины смещения одного кольца собранного подшипника относительно второго кольца из одного крайнего положения во второе. Смещение возможно в радиальном направлении (радиальный зазор) или в осевом направлении (осевой зазор).

В подшипнике, который установлен в узел, как правило выявляется радиальный зазор несколько меньше, чем у того же подшипника в неустановленном состоянии. Уменьшение радиального зазора вызвано величиной натягов подшипниковых колец на валу и в отверстии корпуса и следовательно зависит от выбранной для подшипника посадки диаметров установочных поверхностей.

Дополнительное изменение радиального зазора, главным образом его уменьшение, происходит в ходе эксплуатации в результате температуры, вызываемой самой работой подшипника и от внешних источников, а также в результате упругих деформаций, вызываемых нагрузкой.

Для подшипников нормального исполнения зазор определяется таким образом, чтобы стало возможным одно из подшипниковых колец установить неподвижно – это достаточно для большинства условий эксплуатации подшипникового узла. Для особых случаев подшипниковых узлов с другими требованиями по радиальному зазору выпускаются подшипники с различным радиальным зазором, который обозначается C1 ... C5.

Величины различных групп по радиальному зазору по стандарту ISO 5753 по конструктивным группам подшипников указаны в таблицах 21—27 – при этом эти величины относятся к неустановленным в узел подшипникам при нулевой нагрузке в моменте замера.

Для двухрядных шариковых радиально-упорных подшипников вместо радиального зазора указывается осевой зазор, измеряемый при осевой нагрузке 100 H.

Однорядные радиально-упорные шариковые подшипники и однорядные подшипники с коническими роликами как правило устанавливаются в парах, при которых радиальный или осевой зазор или натяг определяется при установке подшипников.

Радиал	иальный зазор однорядных шариковых подшипников Таблиц									блица 21				
Диамет отверст								Однорядный шариковый	Радиал зазор	іьный				
d		С2 нормальный С3 С4 С5					подшипник разъем-							
Свыше	до	МИН	макс	мин	макс	МИН	макс	МИН	макс	МИН	макс	ный типа Е и ВО	МИН	макс
ММ		МКМ											МКМ	
			_		10							F10 F10		
2,5	10	0	7	2	13	8	23	14	29	20	37	E10, E12	15	30
10	18	0	9	3	18	11	25	18	33	25	45	E15	15	30
18	24	0	10	5	20	13	28	20	36	28	48	BO17, E17	25	45
24	30	1	11	5	20	13	28	23	41	30	53	E20	20	40
30	40	1	11	6	20	15	33	28	46	40	64			
40	50	1	11	6	23	18	36	30	51	45	73			
50	65	1	15	8	28	23	43	38	61	55	90			
65	80	1	15	10	30	25	51	46	71	65	105			
											,,,,			
80	100	1	18	12	36	30	58	53	84	75	120			
100	120	2	20	15	41	36	66	61	97	90	140			
120	140	2	23	18	48	41	81	71	114	105	160			
140	160	2	23	18	53	46	91	81	130	120	180			
160	180	2	25	20	61	53	102	91	147	135	200			
180	200	2	30	25	71	63	117	107	163	150	215			

Осевой зазор двухрядных шариковых радиально-упорных подшипников									Таблица 22	
Диаметр отверстия d		Осевой за С2	·	нормалі			C3		C4	
свыше	до	МИН	макс	МИН	макс	МИН	макс	МИН	макс	
ММ		МКМ								
6	10	1	11	5	21	12	28	25	45	
10	18	1	12	6	23	13	31	27	47	
18	24	2	14	7	25	16	34	28	48	
24	30	2	15	8	27	18	37	30	50	
30	40	2	16	9	29	21	40	33	54	
40	50	2	19	11	33	23	44	36	58	
50	65	3	22	13	36	26	48	40	63	
65	80	3	24	15	40	30	54	46	71	

Радиалі	ьный з	вазор	двухр	ядны	х шари	ковь	ых сфе	риче	ских п	IB						Таблица 23					
Диаметр отверст		Ради	ндриче альны	й зазс								Ради	1ческ 1альн	ый за							
d		C2			альный			C4		C5		C2			альны			C4		C5	
свыше	до	МИН	макс	МИН	макс	МИН	макс	МИН	макс	МИН	макс	МИН	макс	Ним 3	макс	МИН	макс	МИН	макс	МИН	ма
ΜМ		MKM										MKM									
0.5	C	4	0	E	15	10	20	15	O.F.	21	33									-	
2,5 6	6 10	1 2	8 9	5 6	15 17	10 12	20 25	15 19	25 33	27	42	_	-		-		-		-		
10	14	2	10	6	19	13	26	21	35	30	48		_			_					
14	18	3	12	8	21	15	28	23	37	32	50	-	-	-	-	-	-	-	-	-	
18	24	4	14	10	23	18	30	25	39	34	52	7	17	13	26	20	33	28	42	37	
24	30	5	16	11	24	19	35	29	46	40	58	9	20	15	28	23	39	33	50	44	
30	40	6	18	13	29	23	40	34	53	46	66	12	24	19	35	29	46	40	59	52	
40	50	6	19	14	31	25	44	37	57	50	71	14	27	22	39	33	52	45	65	58	
50	65	7	21	16	36	30	50	45	69	62	88	18	32	27	47	41	61	56	80	73	
65	80	8	24	18	40	35	60	54	83	76	108	23	39	35	57	50	75	69	98	91	1:
80	100	9	27	22	48	42	70	64	96	89	124	29	47	42	68	62	90	84	116	109	1
100	120	10	31	25	56	50	83	75	114	105	145	35	56	50	81	75	108	100	139	130	1
120	140	10	38	30	68	60	100	90	135	125	175	-	-	-	-	_	-	_	_	_	
140	160	15	44	35	80	70	120	110	161	150	210	-	-	-	-	-	-	-	-	-	

Диаметр (тверстия	Ралиа	альный за	30D							
d	эт доротги.	C2		нормаль	ный	C3		C4		C5	
свыше	до	МИН	макс	мин	макс	МИН	макс	мин	макс	МИН	макс
MM		MKM									
10	24	0	25	20	45	35	60	50	75	65	90
24	30	0	25	20	45	35	60	50	75 75	70	95
30	40	5	30	25	50	45	70	60	85	80	105
30	40	5	30	20	30	40	70	60	60	00	103
40	50	5	35	30	60	50	80	70	100	95	125
50	65	10	40	40	70	60	90	80	110	110	140
65	80	10	45	40	75	65	100	90	125	130	165
80	100	15	50	50	85	75	110	105	140	155	190
100	120	15	55	50	90	85	125	125	165	180	220
120	140	15	60	60	105	100	145	145	190	200	245
	, 10			00							
140	160	20	70	70	120	115	165	165	215	225	275
160	180	25	75	75	125	120	170	170	220	250	300
180	200	35	90	90	145	140	195	195	250	275	330
200	225	45	105	105	165	160	220	220	280	305	365
225	250	45	110	110	175	170	235	235	300	330	395
250	280	55	125	125	195	190	260	260	330	370	440
280	315	55	130	130	205	200	275	275	350	410	485
315	355	65	145	145	225	225	305	305	385	455	535
355	400	100	190	190	280	280	370	370	460	510	600
000	400	100	130	130	200	200	370	370	400	310	000
400	450	110	210	210	310	310	410	410	510	565	665
450	500	110	220	220	330	330	440	440	550	625	735
500	560	120	240	240	360	360	480	480	600	695	815
560	630	140	260	260	380	380	500	500	620	780	900
630	710	145	285	285	425	425	565	565	705	870	1010
710	800	150	310	310	470	470	630	630	790	980	1140
000	000	100	050	350	E00	500	000	000	000	1100	1070
800	900	180	350		520	520	690	690	860	1100	1270
900	1000	200	390	390	580	580	770	770	960	1220	1410
1000	1120	220	430	430	640	640	850	850	1060	1360	1570
1120	1250	230	470	470	710	710	950	950	1190	1520	1760

Диаметр о	гверстия	Радиал	ьный заз	ор		Диаметр от	гверстия	Радиальный зазор			
d		C1NA		C2NA		d		C1NA		C2NA	
свыше	до	МИН	макс	МИН	макс	свыше	до	МИН	макс	МИН	макс
ММ		МКМ				ММ		МКМ			
24	30	15	25	25	35	160	180	55	85	75	110
30	40	15	25	25	40	180	200	60	90	80	120
40	50	17	30	30	45	200	225	60	95	90	135
50	65	20	35	35	50	225	250	65	100	100	150
65	80	25	40	40	60	250	280	75	110	110	165
80	100	35	55	45	70	280	315	80	120	120	180
100	120	40	60	50	80	315	355	90	135	135	200
120	140	45	70	60	90	355	400	100	150	150	225
140	160	50	75	65	100	400	450	110	170	170	255

нормальный	Радиальный з	38300		
	нормальный		C3	
до	мин	макс	мин	макс
	МКМ			
14	10	50	25	70
18	15	55	35	75
24	25	65	40	80
30	30	65	50	80
40	40	75	60	95
50	40	85	65	100
65	45	90	70	120
80		110		135
100	60	115	95	150
120	70	125	115	70
140	80	155	130	205
160	80	160	140	210
	24 30 40 50 65 80 100 120 140	14 10 18 15 24 25 30 30 40 40 50 40 65 45 80 50 100 60 120 70 140 80	14 10 50 18 15 55 24 25 65 30 30 65 40 40 75 50 40 85 65 45 90 80 50 110 100 60 115 120 70 125 140 80 155	14 10 50 25 18 15 55 35 24 25 65 40 30 30 65 50 40 40 75 60 50 40 85 65 65 45 90 70 80 50 110 75 100 60 115 95 120 70 125 115 140 80 155 130

Диаметр от	гверстия		рическое о выный зазор								
d		C2	·	нормаль		C3	MOVO	C4	MOVO	C5	MOVO
выше	до	МИН	макс	МИН	макс	МИН	макс	МИН	макс	МИН	макс
1M		MKM									
30	40	15	30	30	45	45	60	60	80	80	100
40	50	20	35	55	55	55	75	75	100	100	125
50	65	20	40	40	65	65	90	90	120	120	150
65	80	30	50	50	80	80	110	110	145	145	180
80	100	35	60	60	100	100	135	135	180	180	225
100	120	40	75	75	120	120	160	160	210	210	260
120	140	50	95	95	145	145	190	190	240	240	300
140	160	60	110	110	170	170	220	220	280	280	350
160	180	65	120	120	180	180	240	240	310	310	390
180	200	70	130	130	200	200	260	260	340	340	430
200	225	80	140	140	220	220	290	290	380	380	470
225	250	90	150	150	240	240	320	320	420	420	520
250	280	100	170	170	260	260	350	350	460	460	570
280	315	110	190	190	280	280	370	370	500	500	630
315	355	120	200	200	310	310	410	410	550	550	690
355	400	130	220	220	340	340	450	450	600	600	760
400	450	140	240	240	370	370	500	500	660	660	820
450	500	140	260	260	410	410	550	550	720	720	900
500	560	150	280	280	440	440	600	600	780	780	1000
560	630	170	310	310	480	480	650	650	850	850	1100
630	710	190	350	350	530	530	700	700	920	920	1190
710	800	210	390	390	580	580	770	770	1010	1010	1300
800	900	230	430	430	650	650	860	860	1120	1120	1440
Диаметр отверстия		Кониче	ское отвер	стие							
	гверстия	Радиал	ское отвер ьный зазор)	пгій	C3		C4		C5	
d	гверстия до				ный макс	С3 мин	макс	С4 мин	макс	С5 мин	макс
d свыше		Радиал С2	ьный зазор) нормаль			макс		макс		макс
d свыше мм	до	Радиал С2 мин мкм	макс) нормаль мин	макс	МИН		мин	макс	мин	
d свыше		Радиал С2 мин	ьный зазор) нормаль			макс 65 80				макс 105 130
d свыше мм 30 40 50	до 40 50 65	Радиал С2 мин мкм 25 30 40	макс 35	о нормаль мин 35 45 55	50 60 75	50 60 75	65 80 95	мин 65 80 95	85	85 100 120	105 130 160
d свыше мм 30 40	до 40 50	Радиал С2 мин мкм 25 30	макс 35 45	нормаль мин 35 45	макс 50 60	мин 50 60	65 80	мин 65 80	85 100	мин 85 100	105
d свыше мм 30 40 50 65	до 40 50 65 80	Радиал С2 мин мкм 25 30 40 50	макс 35 45 55 70	35 45 55 70	50 60 75 95	50 60 75 95	65 80 95 120	мин 65 80 95 120	85 100 120 150	85 100 120 150	105 130 160 200
d свыше мм 30 40 50 65	до 40 50 65 80	Радиал С2 мин МКМ 25 30 40 50	макс 35 45 55 70 80	35 45 55 70	50 60 75 95	50 60 75 95	65 80 95 120	мин 65 80 95 120	85 100 120 150	85 100 120 150	105 130 160 200
d свыше мм 30 40 50 65 80 100	ДО 40 50 65 80 100 120	Радиал С2 мин МКМ 25 30 40 50	макс 35 45 55 70 80 100	35 45 55 70 80 100	50 60 75 95 110 135	50 60 75 95 110 135	65 80 95 120 140 170	65 80 95 120 140 170	85 100 120 150	85 100 120 150 180 220	105 130 160 200 230 280
d свыше мм 30 40 50 65 80 100 120	ДО 40 50 65 80 100 120 140	Радиал С2 мин МКМ 25 30 40 50 55 65 80	макс 35 45 55 70 80 100 120	35 45 55 70 80 100 120	50 60 75 95 110 135 160	50 60 75 95 110 135 160	65 80 95 120 140 170 200	65 80 95 120 140 170 200	85 100 120 150 180 220 260	85 100 120 150 180 220 260	105 130 160 200 230 280 330
d свыше мм 30 40 50 65 80 100	ДО 40 50 65 80 100 120	Радиал С2 мин МКМ 25 30 40 50	макс 35 45 55 70 80 100	35 45 55 70 80 100	50 60 75 95 110 135	50 60 75 95 110 135	65 80 95 120 140 170	65 80 95 120 140 170	85 100 120 150	85 100 120 150 180 220	105 130 160 200 230 280
d СВЫШе ММ 30 40 50 65 80 100 120 140	ДО 40 50 65 80 100 120 140 160	Радиал С2 мин МКМ 25 30 40 50 55 65 80 90	макс 35 45 55 70 80 100 120 130	35 45 55 70 80 100 120 130	50 60 75 95 110 135 160 180	50 60 75 95 110 135 160	65 80 95 120 140 170 200	65 80 95 120 140 170 200	85 100 120 150 180 220 260	85 100 120 150 180 220 260	105 130 160 200 230 280 330 380
d СВЫШе ММ 30 40 50 65 80 100 120 140	ДО 40 50 65 80 100 120 140 160	Радиал С2 мин МКМ 25 30 40 50 55 65 80 90	макс 35 45 55 70 80 100 120 130 140 160	35 45 55 70 80 100 120 130	50 60 75 95 110 135 160 180 200 220	50 60 75 95 110 135 160 180 200 220	65 80 95 120 140 170 200 230 260 290	мин 65 80 95 120 140 170 200 230 260 290	85 100 120 150 180 220 260 300 340 370	85 100 120 150 180 220 260 300 340 370	105 130 160 200 230 280 330 380 430 470
d Свыше мм 30 40 50 65 80 100 120 140	ДО 40 50 65 80 100 120 140 160 180 200 225	Радиал С2 мин 25 30 40 50 55 65 80 90 100 110 120	макс 35 45 55 70 80 100 120 130 140 160 180	35 45 55 70 80 100 120 130 140 160 180	50 60 75 95 110 135 160 180 200 220 250	50 60 75 95 110 135 160 180 200 220 250	65 80 95 120 140 170 200 230 260 290 320	мин 65 80 95 120 140 170 200 230 260 290 320	85 100 120 150 180 220 260 300 340 370 410	85 100 120 150 180 220 260 300 340 370 410	105 130 160 200 230 280 330 380 470 520
d свыше мм 30 40 50 65 80 100 120 140	ДО 40 50 65 80 100 120 140 160	Радиал С2 мин МКМ 25 30 40 50 55 65 80 90	макс 35 45 55 70 80 100 120 130 140 160	35 45 55 70 80 100 120 130	50 60 75 95 110 135 160 180 200 220	50 60 75 95 110 135 160 180 200 220	65 80 95 120 140 170 200 230 260 290	мин 65 80 95 120 140 170 200 230 260 290	85 100 120 150 180 220 260 300 340 370	85 100 120 150 180 220 260 300 340 370	105 130 160 200 230 280 330 380 470 520
d свыше мм 30 40 50 65 80 100 120 140 160 180 200 225	ДО 40 50 65 80 100 120 140 160 180 200 225' 250	Радиал С2 мин МКМ 25 30 40 50 55 65 80 90 100 110 120 140	макс 35 45 55 70 80 100 120 130 140 160 180 200	35 45 55 70 80 100 120 130 140 160 180 200	50 60 75 95 110 135 160 180 200 220 250 270	50 60 75 95 110 135 160 180 200 220 250 270	65 80 95 120 140 170 200 230 260 290 320 350	65 80 95 120 140 170 200 230 260 290 320 350	85 100 120 150 180 220 260 300 340 370 410 450	85 100 120 150 180 220 260 300 340 370 410 450	105 130 160 200 230 280 330 380 470 520 570
d Свыше мм 30 40 50 65 80 100 120 140 160 180 200 225	ДО 40 50 65 80 100 120 140 160 180 200 225' 250 280	Радиал С2 мин МКМ 25 30 40 50 55 65 80 90 110 120 140	макс 35 45 55 70 80 100 120 130 140 160 180 200	мин 35 45 55 70 80 100 120 130 140 160 180 200	50 60 75 95 110 135 160 180 200 220 250 270	50 60 75 95 110 135 160 180 200 220 250 270	65 80 95 120 140 170 200 230 260 290 320 350	мин 65 80 95 120 140 170 200 230 260 290 320 350 390	85 100 120 150 180 220 260 300 340 370 410 450	85 100 120 150 180 220 260 300 340 370 410 450	105 130 160 200 230 280 330 380 470 520 570
d овыше мм 30 40 50 65 80 100 120 140 160 180 220 225	ДО 40 50 65 80 100 120 140 160 180 200 225' 250 280 315	Радиал С2 мин МКМ 25 30 40 50 55 65 80 90 110 120 140	макс 35 45 55 70 80 100 120 130 140 160 180 200 220 240	мин 35 45 55 70 80 100 120 130 140 160 180 200	50 60 75 95 110 135 160 180 200 220 250 270	50 60 75 95 110 135 160 180 200 220 250 270	65 80 95 120 140 170 200 230 260 290 320 350 390 430	65 80 95 120 140 170 200 230 260 290 320 350 390 430	85 100 120 150 180 220 260 300 340 370 410 450	85 100 120 150 180 220 260 300 340 370 410 450	105 130 160 200 230 280 330 380 470 520 570 620 680
d свыше мм 30 40 50 65 80 100 120 140 160 180 200 225 250 280 315	ДО 40 50 65 80 100 120 140 160 180 200 225' 250 280 315 355	Радиал С2 мин МКМ 25 30 40 50 55 65 80 90 110 120 140 150 170 190	макс 35 45 55 70 80 100 120 130 140 160 180 200 220 240 270	мин 35 45 55 70 80 100 120 130 140 160 180 200 220 240 270	50 60 75 95 110 135 160 180 200 220 250 270 300 330 360	50 60 75 95 110 135 160 180 200 220 250 270 300 330 360	65 80 95 120 140 170 200 230 260 290 320 350 390 430 470	мин 65 80 95 120 140 170 200 230 260 290 320 350 390 430 470	85 100 120 150 180 220 260 300 340 370 410 450 490 540 590	85 100 120 150 180 220 260 300 340 370 410 450 490 540 590	105 130 160 200 230 280 330 380 470 520 570 620 680 740
d СВЫШе ММ 30 40 50 65 80 100 120 140 160 180 200 225	ДО 40 50 65 80 100 120 140 160 180 200 225' 250 280 315	Радиал С2 мин МКМ 25 30 40 50 55 65 80 90 110 120 140	макс 35 45 55 70 80 100 120 130 140 160 180 200 220 240	мин 35 45 55 70 80 100 120 130 140 160 180 200	50 60 75 95 110 135 160 180 200 220 250 270	50 60 75 95 110 135 160 180 200 220 250 270	65 80 95 120 140 170 200 230 260 290 320 350 390 430	65 80 95 120 140 170 200 230 260 290 320 350 390 430	85 100 120 150 180 220 260 300 340 370 410 450	85 100 120 150 180 220 260 300 340 370 410 450	105 130 160 200 230 280 330 380 470 520 570 620 680 740
d свыше мм 30 40 50 65 80 100 120 140 160 180 200 225 250 280 315 355 400	до 40 50 65 80 100 120 140 160 200 225 250 280 315 355 400 450	Радиал С2 мин 25 30 40 50 55 65 80 90 100 110 120 140 150 170 190 210	макс 35 45 55 70 80 100 120 130 140 160 180 200 220 240 270 300 330	мин 35 45 55 70 80 100 120 130 140 160 180 200 220 240 270 300	50 60 75 95 110 135 160 180 200 220 250 270 300 330 360 400	50 60 75 95 110 135 160 180 200 220 250 270 300 330 360 400	65 80 95 120 140 170 200 230 260 290 320 350 390 430 470 520	мин 65 80 95 120 140 170 200 230 260 290 320 350 390 430 470 520 570	85 100 120 150 180 220 260 300 340 370 410 450 490 540 590 650	85 100 120 150 180 220 260 300 340 370 410 450 490 540 590 650	105 130 160 200 230 280 330 380 470 520 570 620 680 740 820
d свыше мм 30 40 50 65 80 100 120 140 160 180 200 225 250 280 315 355 400 450	до 40 50 65 80 100 120 140 160 200 225 250 280 315 355 400 450 500	Радиал С2 мин 25 30 40 50 55 65 80 90 100 110 120 140 150 170 190 210	макс 35 45 55 70 80 100 120 130 140 160 180 200 220 240 270 300 330 370	мин 35 45 55 70 80 100 120 130 140 160 180 200 220 240 270 300 330 370	50 60 75 95 110 135 160 180 200 220 250 270 300 330 360 400	50 60 75 95 110 135 160 180 200 220 250 270 300 330 360 400 440 490	65 80 95 120 140 170 200 230 260 290 320 350 390 430 470 520	65 80 95 120 140 170 200 230 260 290 320 350 390 430 470 520 570 630	85 100 120 150 180 220 260 300 340 370 410 450 490 540 590 650 720 790	85 100 120 150 180 220 260 300 340 370 410 450 490 540 590 650 720 790	105 130 160 200 230 280 330 380 470 520 570 620 680 740 820
d овыше мм 30 40 50 65 80 100 120 140 160 180 225 225 250 280 315 355 400 450 500	до 40 50 65 80 100 120 140 160 180 200 225' 250 280 315 355 400 450 500 560	Радиал С2 мин 25 30 40 50 55 65 80 90 100 110 120 140 150 170 190 210 230 260 290	макс 35 45 55 70 80 100 120 130 140 160 180 200 220 240 270 300 330 370 410	мин 35 45 55 70 80 100 120 130 140 160 180 200 220 240 270 300 330 370 410	50 60 75 95 110 135 160 180 200 220 250 270 300 330 360 400 440 490 540	50 60 75 95 110 135 160 180 200 220 250 270 300 330 360 400 440 490 540	65 80 95 120 140 170 200 230 260 290 320 350 390 430 470 520 570 630 680	65 80 95 120 140 170 200 230 260 290 320 350 390 430 470 520 570 630 680	85 100 120 150 180 220 260 300 340 370 410 450 490 540 590 650 720 790 870	85 100 120 150 180 220 260 300 340 370 410 450 490 540 590 650 720 790 870	105 130 160 200 230 280 330 380 470 520 570 620 680 740 820 910 1000 1100
d овыше 30 40 50 65 80 100 120 140 160 180 220 225 250 280 315 355 400 450 500	до 40 50 65 80 100 120 140 160 200 225 250 280 315 355 400 450 500	Радиал С2 мин 25 30 40 50 55 65 80 90 100 110 120 140 150 170 190 210	макс 35 45 55 70 80 100 120 130 140 160 180 200 220 240 270 300 330 370	мин 35 45 55 70 80 100 120 130 140 160 180 200 220 240 270 300 330 370	50 60 75 95 110 135 160 180 200 220 250 270 300 330 360 400	50 60 75 95 110 135 160 180 200 220 250 270 300 330 360 400 440 490	65 80 95 120 140 170 200 230 260 290 320 350 390 430 470 520	65 80 95 120 140 170 200 230 260 290 320 350 390 430 470 520 570 630	85 100 120 150 180 220 260 300 340 370 410 450 490 540 590 650 720 790	85 100 120 150 180 220 260 300 340 370 410 450 490 540 590 650 720 790	105 130 160 200 230 280 330 380 470 520 570 620 680 740 820 910 1000 1100
d ввыше 30 40 50 65 80 100 120 140 160 180 2200 225 250 280 315 3355 400 450 500 560	до 40 50 65 80 100 120 140 160 200 225; 250 280 315 355 400 450 500 560 630	Радиал С2 мин МКМ 25 30 40 50 55 65 80 90 100 110 120 140 150 170 190 210 230 260 290 320	макс 35 45 55 70 80 100 120 130 140 160 180 200 220 240 270 300 330 370 410 460	мин 35 45 55 70 80 100 120 130 140 160 180 200 220 240 270 300 330 370 410 460	50 60 75 95 110 135 160 180 200 220 250 270 300 330 360 400 440 490 540 600	50 60 75 95 110 135 160 180 200 220 250 270 300 330 360 400 440 490 540 600	65 80 95 120 140 170 200 230 260 290 320 350 390 430 470 520 570 630 680 760	65 80 95 120 140 170 200 230 260 290 320 350 390 430 470 520 570 630 680 760	85 100 120 150 180 220 260 300 340 370 410 450 490 540 590 650 720 790 870 980	85 100 120 150 180 220 260 300 340 370 410 450 490 540 590 650 720 790 870 980	105 130 160 200 230 280 330 380 470 520 570 620 680 740 820 910 1000 1100 1230
d ВВЫШе MM 30 40 50 65 80 100 120 140 160 180 2200 225 250 280 315 3355 400 450 500 560 630	до 40 50 65 80 100 120 140 160 180 200 225 250 280 315 355 400 450 500 560 630	Радиал С2 мин 25 30 40 50 55 65 80 90 100 110 120 140 150 170 190 210 230 260 290 320	макс 35 45 55 70 80 100 120 130 140 160 180 200 220 240 270 300 330 370 410 460 510	нормаль мин 35 45 55 70 80 100 120 130 140 160 180 200 220 240 270 300 330 370 410 460 510	50 60 75 95 110 135 160 180 200 220 250 270 300 330 360 400 440 490 540 600	50 60 75 95 110 135 160 180 200 220 250 270 300 330 360 400 440 490 540 600	65 80 95 120 140 170 200 230 260 290 320 350 390 430 470 520 570 630 680 760	65 80 95 120 140 170 200 230 260 290 320 350 390 430 470 520 570 630 680 760	85 100 120 150 180 220 260 300 340 370 410 450 490 540 590 650 720 790 870 980	85 100 120 150 180 220 260 300 340 370 410 450 490 540 590 650 720 790 870 980	105 130 160 200 230 280 330 380 470 520 570 620 680 740 820 910 1100 1230
d свыше мм 30 40 50 65 80 100 120 140 160 180 200 225 250 280 315 355 400	до 40 50 65 80 100 120 140 160 200 225; 250 280 315 355 400 450 500 560 630	Радиал С2 мин МКМ 25 30 40 50 55 65 80 90 100 110 120 140 150 170 190 210 230 260 290 320	макс 35 45 55 70 80 100 120 130 140 160 180 200 220 240 270 300 330 370 410 460	мин 35 45 55 70 80 100 120 130 140 160 180 200 220 240 270 300 330 370 410 460	50 60 75 95 110 135 160 180 200 220 250 270 300 330 360 400 440 490 540 600	50 60 75 95 110 135 160 180 200 220 250 270 300 330 360 400 440 490 540 600	65 80 95 120 140 170 200 230 260 290 320 350 390 430 470 520 570 630 680 760	65 80 95 120 140 170 200 230 260 290 320 350 390 430 470 520 570 630 680 760	85 100 120 150 180 220 260 300 340 370 410 450 490 540 590 650 720 790 870 980	85 100 120 150 180 220 260 300 340 370 410 450 490 540 590 650 720 790 870 980	105 130 160 200 230 280 330 380 470 520 570 620 680 740 820 910 1100 11230

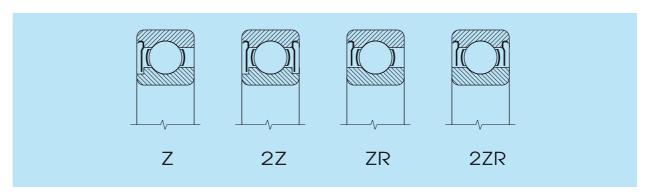
2.5 Сепаратор

Сепаратор в подшипнике качения выполняет следующую роль:

- распределяет тела качения равномерно по окружности;
- предотвращает взаимный контакт тел качения и их скольжение;
- предотвращает выпадание тел качения из разъемного или самоустанавливающегося подшипника при его установке.

С точки зрения конструкции и материалов сепараторы распределяются на листоштампованные и массивные.

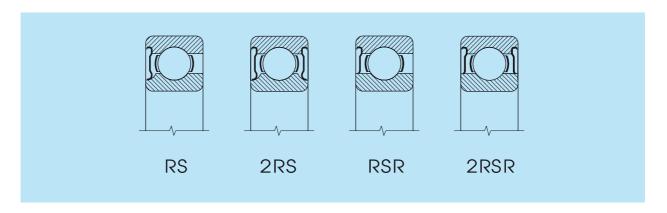
Листоштампованные сепараторы производятся из стального или латунного листа и в большинстве случаев используются для небольших и средних по размерам подшипников. Их преимуществом по сравнению с массивными сепараторами является малая масса. Массивные сепарторы производятся из стали, латуни, бронзы, легких сплавов или пластмасс в различных исполнениях конструкции. Металлические материалы для сепараторов используются в тех случаях, когда на прочность кладутся повышенные требования и подшипник предназначен для повышенных температур эксплуатации. Сепараторы в подшипниках центруются в радиальном направлении по телам качения (это самый распространенный способ) или по бортам одного из подшипниковых колец.


Подшипники без сепартора, т. е. с полным количеством тел качения, используются изредка, лишь для некоторых видов подшипников, например для однорядных подшипников с игольчатыми роликами.

В текстах о конструктивных исполнениях подшипников в части, касающейся сепараторов, всегда указан перечень сепараторов, выпускаемых в основном исполнении и возможности поставок подшипников с отличающимся исполнением.

2.6 Защитные шайбы

Подшипники с шайбами на одной или обеих сторонах выпускаются с защитными шайбами (Z, 2Z, ZR, 2ZR) или уплотнениями (RS, 2RS, RSR, 2RSR).


Защитные шайбы создают бесконтактное уплотнение. В исполнении Z и 2Z канавка для защитной шайбы выполнена на внутреннем кольце, в исполнении ZR и 2ZR прилегает защитная шайба к гладкой поверхности внутреннего кольца.

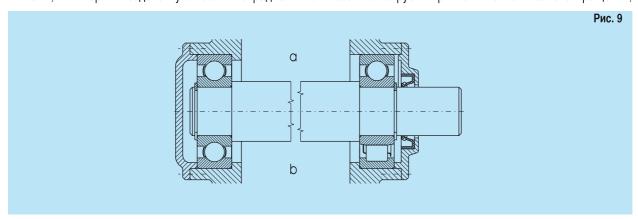
Уплотнения представляющие собой уплотнительные кольца с резиной, которая вулканизацией нанесена на металлических арматурах, и образующие в исполнении с закругленной канавкой эффективное контактное уплотнение на внутреннем кольце (RS и 2RS), а также в исполнении с контактом на гладкую поверхность наружного кольца (RSR и 2RSR).

Шайбы и уплотнительные кольца устанавливаются в канавке и они не демонтируются.

Уплотнения RS, 2RS, RSR, 2RSR возможно использовать для температур в диапазоне -30 °C ... +110 °C, уплотнения RS1, -2RS1, RSR1, -2RSR1 для температур в диапазоне -45 °C ... +120 °C, уплотнения RS2, -2RS2, RSR2, -2RSR2 для температур в диапазоне -60 °C ... +150 °C.

Подшипники с шайбами на обеих сторонах в основном исполнении заполняются качественной пластической смазкой с температурным диапазоном -30°C ... +110°C, характеристики которой обеспечивают смазку как правило в течение всего срока службы подшипника при нормальных условиях эксплуатации. В подшипники этого исполнения нет возможности добавлять смазку.

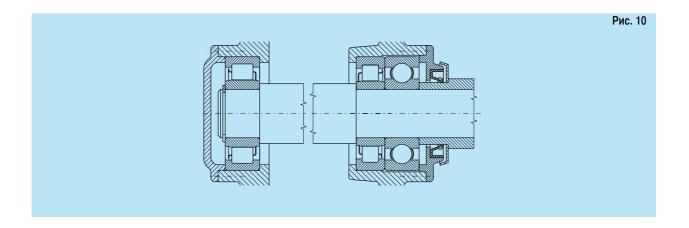
3. Конструкция подшипникового узла


3.1 Общие принципы проектирования подшипникового узла с подшипниками качения

Ротация вала или другой детали, установленной с помощью подшипников качения, направляется в радиальном и осевом направлении таким образом, чтобы соблюдалось основное условие однозначности ее движения. Деталь должна находиться, если это возможно, в статически определенном положении, т. е. опираться в двух местах в радиальном и в одном месте в осевом направлении.

Типичный пример такого узла показан на рис. 9, где вал радиально направляется с помощью двух подшипников, из которых один фиксирует вал в осевом направлении. Направляющий (неподвижный) подшипник воспринимает радиальную нагрузку и одновременно тоже осевую в обеих направлениях. В качестве направляющего подшипника чаще всего применяются радиальные подшипники, которые могут воспринимать комбинированную нагрузку, например однорядные шариковые, двухрядные сферические шариковые подшипники, двухрядные роликоподшипники со сферическими роликами или однорядные радиально-упорные шариковые подшипники и конические роликоподшипники. Подвижный подшипник воспринимает лишь радиальную нагрузку и должен позволять некоторое смещение в осевом направлении так, чтобы предотвратить возникновение нежелательного осевого напряжения, вызываемого внешними обстоятельствами (температурное расширение, неточности изготовления присоединительных деталей узла и т. п.).

Осевое смещение возможно обеспечить путем перемещения одного из колец подшипника относительно детали оборудования, которая с подшипником непосредственно связана, например наружного кольца подшипника относительно отверстия в корпусе (рис. 9a) или непосредственно в подшипнике (рис. 9b).


Узлы, в которых воздействуют большие радиальные и осевые нагрузки при повышенной частоте вращения,

целесообразно проектировать таким образом, чтобы подшипники воспринимали лишь радиальные или-же осевые усилия, как это показано на рис. 10. В таких случаях возможно использовать для радиального направления некоторый из радиальных подшипников и для осевого направления те радиальные подшипники, которые способны воспринимать также осевую нагрузку, или-же пару таких подшипников, двойной упорный подшипник, или пару одинарных упорных подшипников. Условием является то, чтобы упорные направляющие подшипники устанавливались с радиальным зазором.

Другим, часто применяемым вариантом является установка в двух подшипниках, которых конструкция позволяет воспринимать радиальные и осевые нагрузки. Осевые нагрузки воспринимают оба подшипника – всегда в зависимости от направления воздействия усилий – и одновременно воспринимают радиальную нагрузку. Пример такого узла показан на рис. 11.

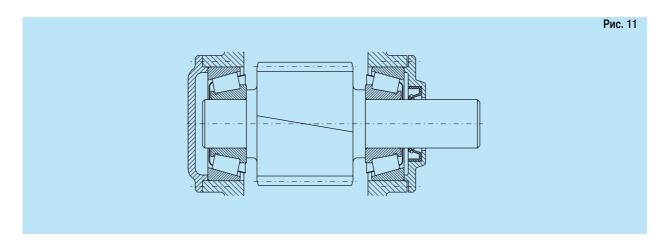
В качестве надежной конструкции используется комплект, состоящий из пары однорядных конических роликоподшипников или однорядных радиально-упорных шариковых подшипников. Возможно использовать также другие виды подшипников, которые способны воспринимать нагрузку одновременно в радиальном и осевом направлениях, например однорядные шарикоподшипники разъемные или-же однорядные цилиндрические роликоподшипники в исполнении NJ и т. п.

3.2 Закрепление подшипника.

Радиальное и осевое закрепление подшипника на валу и в отверстии корпуса или другой части конструкции имеет прямую связь с общим конструктивным исполнением узла. При выборе способа закрепления необходимо особо учесть характер и размер воздействующих усилий, рабочую температуру в месте установки и материал присоединительных деталей.

При определении размеров присоединительных деталей должен конструктор, кроме типа и размеров подшипника принимать во внимание тоже способ установки, демонтажа и возможность работ по техническому уходу.

3.2.1 Радиальное закрепление подшипника


Подшипник фиксируется в радиальном направлении на точных цилиндрических поверхностях вала и отверстия в корпусе. В отдельных случаях для закрепления на вал используется закрепительная или стяжная втулка, или-же возможно подшипник закрепить непосредственно на коническую часть вала.

Правильное радиальное подшипника на валу и в корпусе имеет значительное влияние на использование его грузоподъемности и правильную функцию в узле. При этом важны следующие обстоятельства:

- а) надежное закрепление и равномерное опирание колец;
- б) простая установка и демонтаж;
- в) смещение подвижного подшипника в осевом направлении.

Принципиально оба подшипниковых кольца должны устанавливаться неподвижно, так как лишь этим достигается их надежное опирание по всей окружности и радиальное закрепление относительно поворота. Для облегчения установки и демонтажа или для смещения подвижного подшипника разрешается подвижная установка одного из колец.

При выборе правильного радиального закрепления подшипника нужно рассматривать и учесть следующие влияния.

Окружная нагрузка возникает тогда, если соответствующее подшипниковое кольцо вращается и направление нагрузки не меняется, или если кольцо не вращается и нагрузка вращается. Окружность подшипникового кольца в ходе одного оборота постепенно нагружается. В таком случае должно нагруженное кольцо всегда устанавливаться неподвижно с нужным натягом.

Точечная нагрузка возникает тогда, если подшипниковое кольцо не вращается и внешнее усилие ориентировано все время на эту же точку дорожки качения, или если кольцо и усилие вращаются с одинаковой частотой. Кольцо, на которое воздействует точечная нагрузка, возможно устанавливать подвижно — если такое нужно по условиям.

Неопределенный способ нагрузки возникает тогда, если на кольцо воздействуют переменные внешние усилия, при которых нет возможности определить направление и изменения нагрузки (например неуравновешенные массы, толчки и т. п.). Неопределенный способ нагрузки определяет необходимость того, чтобы оба кольца установливались с натягом (неподвижно). При таких условиях в большинстве случаев узлов необходимо выбирать подшипники с повышенным радиальным зазором.

Размер нагрузки имеет непосредственное влияние на выбор величины натяга в узле (больше нагрузка – больше натяг) с учетом случаев ударной нагрузки. Неподвижная посадка на валу или в отверстии корпуса вызывает деформацию кольца и этим самым получается уменьшение радиального зазора. Для того, чтобы в случаях неподвижной посадки обеспечивался необходимый радиальный зазор необходимо в отдельных случаях использовать подшипники с увеличенным радиальным зазором. Фактический зазор после установки подшипника зависит от типа и размера подшипника.

Размер и тип подшипника обуславливает размер необходимого натяга устанавливаемого кольца. Для подшипников небольших размеров выбирается натяг меньше и наоборот. Относительно меньше натяги используются например для таких же по размерам шариковых подшипников по сравнению с цилиндрическими, коническими или сферическими роликоподшипниками.

Материал и конструкция присоединительных частей должны учитываться при определении допусков при их изготовлении. Результаты практического опыта учтены в таблицах, которые приведены дальше. В случаях, когда подшипники устанавливаются в корпусы с легких сплавов или на полые валы, выбираются посадки с повышенными натягами.

Разъемные корпусы не рекомендуются для установки с большими натягами – есть реальная опасность сжатия подшипника в плоскости разъема корпуса.

Нагрев и тепло, возникающие в подшипнике, могут вести к ликвидации натяга на валу и тем самым и к повороту кольца. В случае корпуса может возникать противоположный случай. В результате нагрева получится ликвидация зазора и тем самым ограничение и даже исключение осевого смещения кольца подвижного подшипника в корпусе. Поэтому этому фактору уделяется при проектировании узла большое значение.

Точность установочных поверхностей с точки зрения допусков на размеры и геометрическую форму важна исходя из того, что она может передаваться на дорожки качения подшипниковых колец и определять точность узла.

В случае применения подшипников нормального класса точности для установочной поверхности вала выбирается как правило посадка в пределах степени точности IT6 и для установочной поверхности в корпусе IT7.

Для шариковых и цилиндрических роликовых подшипников небольших размеров возможно использовать для вала степень точности IT5 и для корпуса минимально IT6.

Допустимое отклонение круглости и цилиндричности и допустимое осевое биение установочных и опорных поверхностей для подшипников должны быть относительно оси меньше, чем диапазон допуска на диаметры вала и отверстия.

С возрастающей точностью применяемых подшипников повышаюются тоже требования по точности установочных поверхностей. Рекомендуемые величины приведены в таблицах 28 и 29.

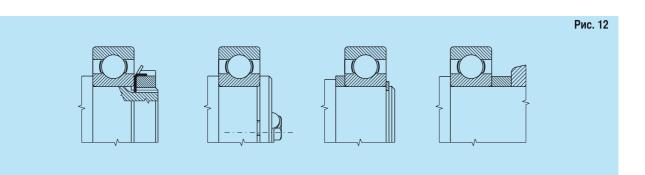
Установка и демонтаж подшипника в случае, если одно из колец установлено с зазором (подвижно), легки и несложны. Если по причинам эксплуатации необходимо, чтобы обе кольца устанавливались с натягом, то необходимо подбирать соответствующий тип подшипника, например подшипник разъемный /конический, цилиндрический игольчатый роликоподшипник/ или подшипник с коническим отверстием. Цапфы валов для установки втулок под

подшипники с коническим отверстием могут выпускаться с посадкой h9 или h10, геометрическая форма должна быть по степени точности IT5 или IT7 в зависимости от ответственности узла.

Осевое смещение колец подвижного подшипника должно быть обеспечено при всех условиях эксплуатации. В случае применения неразъемных подшипников смещение кольца с точечной нагрузкой достигается путем его установки с зазором (подвижно).

В корпусах с легких сплавов необходимо в том случае, если наружное кольцо будет устанавливаться с зазором, в отверстие устанавливать стальную втулку.

Надежная подвижность в осевом направлении достигается, если для узла используется цилиндрический роликоподшипник в исполнении N и NU или радиальный игольчатый роликоподшипник.

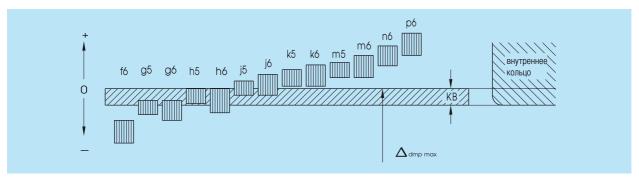

Рекомендуемые допуски на диаметры валов и отверстий присоединительных частей для радиальных и упорных подшипников приведены в таблицах 30 — 35.

3.2.2 Осевое закрепление подшипника

Внутреннее кольцо подшипника с цилиндрическим отверстием, которое установлено на валу с натягом (неподвижно) как правило фиксируется в осевом направлении с помощью цилиндрической закрепительной гайки, фасонного упорного или стопорного кольца – при этом второй торец как правило упирается на уступ вала. В качестве опорного торца для внутренних колец используются соседние детали и если это необходимо, то между такую деталь и внутреннее кольцо подшипника устанавливаются дистанционные кольца. Примеры осевого закрепления подшипника приведены на рис. 12.

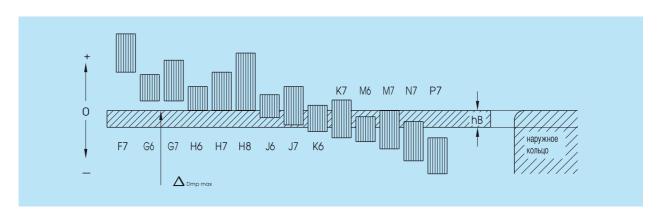
Класс точности подшипника	Место установки	Допустимое отклонение цилиндричности	Допустимое осевое биение опорных поверхностей относительно оси
	вал	<u> 1T5</u> 2	IT3
P0, P6	корпус	<u>_IT6_</u> 2	IT4
	вал	<u>_IT3_</u> 2	IT2
P5, P4	корпус	<u> 1T4</u> 2	IT3

Основные допуски IT2.	IT6					Таблица 29
Номинальны	 ій диаметр			Степень	гочности	
СВЫШЕ	до	IT2	IT3	IT4	IT5	IT6
ММ		МКМ				
6	10	1,5	2,5	4	6	9
10	18	2	3	5	8	11
18	30	2,5	4	6	9	13
30	50	2,5	4	7	11	16
50	80	3	5	8	13	19
80	120	4	6	10	15	22
120	180	5	8	12	18	25
180	250	7	10	14	20	29
250	315	8	12	16	23	32
315	400	9	13	18	25	36
400	500	10	15	20	27	40


		Ди	аметр вала [м	м]	
Условия работы	Примеры узлов	Шариковые- подшипники	илиндрические игольчатые конические, ¹⁾ пикоподшипни	Сферические роликовые	Посадка
Точечная нагрузка внутреннего	кольца				
Малая и нормальная нагрузка Р _г ≦0,15 С _г	Колеса холостого хода ролики, шкивы		Все диаметры		g6 ²⁾
Большая ударная нагрузка P _. >0,15 C _.	Колеса транспортных, тележек, натяжные ролики				h6
	кольца, или неопределенный сп	особ нагрузки			
Малая и переменная нагрузка Р __ ≦0,07 С __	Транспортные устройства, вентиляторы	(18) 100 (100) 200	≦40 (40) 140		j6 k6
Нормальная и большая нагрузка P _r >0,07 C _r	Общее машиностроение, электродвигатели, турбины насосы, двигатели ВС редукторы, деревообр. станки	≦18 (18) 100 (100) 140 (140) 200	≤40 (40) 100 (100) 140 (140) 200 >200	- ≤40 (40) 65 (65) 100 (100) 140 >140	j5 k5 (k6) ³⁾ m5 (m6) ³⁾ m6 n6 p6
Сверхбольшая нагрузка, удары, сложные условия работы Р.>0,15 С.	Буксы подвиж. составов тяговые моторы, прокатные станы	- -	(50) – 140 (140) 500(1 >500	(50) – 100 00) 500 >500	n6 ⁴⁾ p6 ⁴⁾ r6 (p6) ⁴⁾
высокая точность узла при малой нагрузке P _r ≦0,07 C _r	Металлорежущие станки	≦18 (18) 100 (100) 200	- ≦40 (40) 140 (140) 200	- - - -	h5 ⁵⁾ j5 ⁵⁾ k5 ⁵⁾ m5
Исключительно осевая нагрузка			все диаметры		j6
	остием и закрепительной или стя	жной втулкой			
Все способы нагрузки	Общие виды узлов, буксовые подшипники рельсовых составов. Несложные виды узлов		все диаметры		h9/IT5 h10/IT7
 Для больших подшипников в Посадки в скобках принимак вращения 	икоподшипников без колец, смот юзможно принимать посадку f6 д отся как парвило для однорядных одшипники с радиальным зазорог	, ля обеспечения осю к конических ролико м больше нормальн	оподшипников ого	или при низкой	частоте

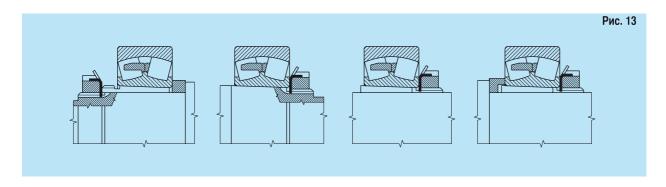
Допуски диаметров отверо (действительно для корпус			ников	Таблица 3
Условия работы	Подвижность наружного кольца	Корпус	Примеры узлов	Посадка
Окружная нагрузка наружно	ого кольца			
Большие ударные нагрузки P,>0,15 C, Тонкостенные корпусы	Неподвижное	Цельный	Ступицы колес с цилиндрическими роликоподшипниками, шатунные подшипники	P7
Нормальная и большая нагрузка Р,>0,07 С,	Неподвижное		Ступицы колес с шарикоподшипниками, ходовые колеса кранов, подшипники коленчатых валов	N7
Малая и переменная нагрузка Р,≦,07 С	Неподвижное		Рольганговые ролики, натяжные ролики	M 7
Неопределенный способ				
Большие ударные нагрузки Р.>0,15 С.	Неподвижное		Тяговые двигатели	M7
Большая и нормальная нагрузка Р.>0,07 С.	Как правило неподвижное	Цельный	Электродвигатели, насосы, вентиляторы, коленчатые валы	K7
Малая и переменная нагрузка Р, ≦0,07 С,	Как правило подвижное		Электродвигатели, насосы, вентиляторы, коленчатые валы	J7
Точные подшипниковые узлы				
Малая нагрузка Р _г ≦0,07 С _г	Как правило непоидвижное		Цилиндрические ролико- подшипники для станкостроения,	K6 ¹⁾
	Подвижное Легко подвижное	Цельный	шарикоподшипники для станкостроения. Малые электродвигатели	J6 ²⁾ H6
Точечная нагрузка наружног	о кольца		·	
Любая нагрузка			Общее машиностроение, буксы рельсовых составов	H7 ³⁾
Малая и нормальная нагрузка Р, ≦0,15 С,	Легко подвижное	Цельный или из двух частей	Общее машиностроение, менее сложное машиностроение	H8
		·	Сушильные установки бумагоделательных машин, крупные электродвигатели	G7 ⁴⁾

- 1) Для больших нагрузок принимаются более жесткие посадки M6 или N6. Для цилиндрических роликоподшипников с коническим отверстием принимаются посадки K5 или M5.
- 2) Допуски для однорядных шариковых подшипников по классу точности Р5 и Р4 приведены на стр. 89.
- 3) Для подшипников с наружным диаметром D < 250 мм с разницей температуры между наружным кольцом и корпусом свыше 10°C принимается посадка G7
- 4) Для подшипников с наружным диаметром D > 250 мм с разницей температуры между наружным кольцом и корпусом свыше 10°C принимается посадка F7


для упорных подшипни	КОВ		Таблица 32
Способ нагрузки		Диаметр вала [мм]	Посадка
		_	j6
Исключительно осевая	нагрузка	Все диаметры	
			j6
Одновременно осевая	Точечная нагрузка	Все диаметры	j6
и радиальная нагрузка	тугого кольца		
	Окружная нагрузка	≦200	k6
	тугого кольца	(200) 400	m6
	или неопределенный	> 400	n6
	Способ нагрузки Исключительно осевая Одновременно осевая	Исключительно осевая нагрузка Одновременно осевая и радиальная нагрузка тугого кольца Окружная нагрузка тугого кольца	Одновременно осевая нагрузка Одновременно осевая и радиальная нагрузка Окружная нагрузка Окружная нагрузка Точечная нагрузка Окружная нагрузка Тугого кольца Окружная нагрузка

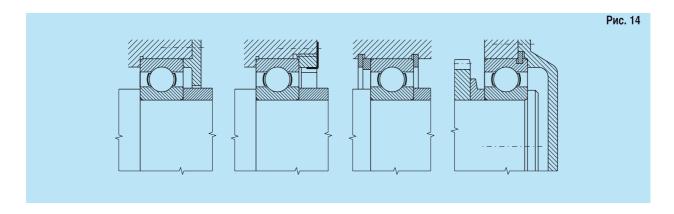
Допуски диаметров отверстий корпусов для упорных подшипников								
Тип подшипника	Способ нагрузки		Примечание	Посадка				
			В случае стандартных узлов					
Упорные шариковые	Исключительно осевая	і нагрузка	может свободное кольцо	H8				
			устанавлибаться с зазором					
		Свободное кольцо	-					
			устанавлибатьса свободное					
Упорные со сферическими	Одновременно	Точечная нагрузка или	с радиал. зазором	H7				
роликами	осевая и радиальная	неопределенный способ						
	нагрузка	нагрузки свободного кольца						
		Окружная нагрузка		M7				
		свободного кольца						

Номинал диаметр свыше мм 1 3 6 10		f6 верхн. мкм	нижн.	g5 верхн.	HIMNEH	g6		h5		h6		ј5		j6(js6)		k5	
мм 1 3 6 10	до		нижн.	верхн.	LIMNZII												
1 3 6 10		МКМ			пижп.	верхн.	нижн.	верхн.	нижн.	верхн.	нижн.	верхн.	нижн.	верхн.	нижн.	верхн	нижн.
3 6 10																	
6 10 18	6	-6	-12	-2	-6	-2	-8	0	-4	0	-6	+2	-2	+4	-2	+4	0
6 10 18	0	-10	-18	-4	-9	-4	-12	0	-5	0	-8	+3	-2	+6	-2	+6	+1
18	10	-13	-22	-5	-11	-5	-14	0	-6	0	-9	+4	-2	+7	-2	+7	+1
	18	-16	-27	-6	-14	-6	-17	0	-8	0	-11	+5	-3	+8	-3	+9	+1
	30	-20	-33	-7	-16	-7	-20	0	-9	0	-13	+5	-4	+9	-4	+11	+2
30	50	-25	-41	-9	-20	-9	-25	0	-11	0	-16	+6	-5	+11	-5	+13	+2
50	80	-30	-49	-10	-23	-10	-29	0	-13	0	-19	+6	-7	+12	-7	+15	+2
80	120	-36	-58	-12	-27	-12	-34	0	-15	0	-22	+6	-9	+13	-9	+18	+3
120	180	-43	-68	-14	-32	-14	-39	0	-18	0	-25	+7	-11	+14	-11	+21	+3
180	250	-50	-79	-15	-35	-15	-44	0	-20	0	-29	+7	-13	+14	-13	+24	+4
250	315	-56	-88	-17	-40	-17	-49	0	-23	0	-32	+7	-16	+16	-16	+24	+4
315	400	-62	-98	-18	-43	-17	-54	0	-25	0	-36	+7	-18	+18	-18	+27	
313	400	-02	-90	-10	-43	-10	-54	U	-20	U	-30	+/	-10	+10	-10	+29	+4
400	500	-68	-108	-20	-47	-20	-60	0	-27	0	-40	+7	-20	+20	-20	+32	+5
500	630	-76	-120	-	-	-22	-66	-	-	0	-44	-	-	+22	-22	-	-
630	800	-80	-130	-	-	-24	-74	-	-	0	-50	-	-	+25	-25	-	-
800	1000	-86	-142	-	-	-26	-82	-	-	0	-56	-	-	+28	-28	-	-
1000	1250	-98	-164	-	-	-28	-94	-	-	0	-66	-	-	+33	-33	-	-
Номинал	ьный-	k6		m5		m6		n6		p6		h9¹)		IT5		h10 ¹⁾	IT7
диаметр	вала														505/41		
свыше	до	верхн.	нижн.	верхн.	нижн.	верхн.	нижн.	верхн.	нижн.	верхн.	нижн.	верхн.	нижн.		верхн.	нижн.	
MM		MKM															
1	3	+6	0	+6	+2	+8	+2	+10	+4	+12	+6	0	-25	4	0	-40	10
3	6	+9	+1	+9	+4	+12	+4	+16	+8	+20	+12	0	-30	5	0	-48	12
6	10	+10	+1	+12	+6	+15	+6	+19	+10	+24	+15	0	-36	6	0	-58	15
10	18	+12	+1	+15	+7	+18	+7	+23	+12	+29	+18	0	-43	8	0	-70	18
18	30	+15	+2	+17	+8	+21	+8	+28	+15	+35	+22	0	-52	9	0	-84	21
30	50	+13	+2	+20	+9	+25	+9	+33	+17	+42	+26	0	-62	11		-100	25
50	80	+21	+2	+24	+11	+30	+11	+39	+20	+51	+32	0	-74	13		-120	30
80	120	+25	+3	+24	+13	+35	+13	+45	+23	+59	+37	0	-87	15		-140	35
00	120	+23	+0	+20	+10	+00	+10	+40	+20	+33	+37	U	-07	13	U	-140	33
120	180	+28	+3	+33	+15	+40	+15	+52	+27	+68	+43		-100	18		-160	40
180	250	+33	+4	+37	+17	+46	+17	+60	+31	+79	+50		-115	20		-185	46
250	315	+36	+4	+43	+20	+52	+20	+66	+34	+88	+56		-130	23		-210	52
315	400	+40	+4	+46	+21	+57	+21	+73	+37	+98	+62	0	-140	25	0	-230	57
	500	+45	+5	+50	+23	+63	+23	+80	+40	+108	+68	0	-155	27	0	-250	63
			10			100	. 20		1 10	1 100		J	100				00
400																	70
400 500	630	+44	0	-	-	+70	+26	+88	+44	+122	+78	0	-175	30	0	-280	70 80
400												0			0		70 80 90


¹⁾ В случае валов, изготовленных по посадке h9 и h10 для подшипников с закрепительной или стяжной втулкой, не допускается превышение отклонений круглости и цилиндричности основной степени точности IT5 и IT7

Номинальный- диаметр отверстия		F7		G6		G7	G7		H6			H8		J6(Js6)	
свыше	-	верхн.	нижн.	верхн.	нижн.	верхн.	нижн.	верхн.	нижн.	верхн.	нижн.	верхн.	нижн.	верхн.	нжин
ММ		MKM													
	4.0	00	4.0		_		_		•			00	•	_	
6	10	+28	+13	+14	+5	+20	+5	+9	0	+15	0	+22	0	+5	-4
10	18	+34	+16	+17	+6	+24	+6	+11	0	+18	0	+27	0	+6	-5
18	30	+41	+20	+20	+7	+28	+7	+13	0	+21	0	+33	0	+8	-5
30	50	+50	+25	+25	+9	+34	+9	+16	0	+25	0	+39	0	+10	-6
50	80	+60	+30	+29	+10	+40	+10	+19	0	+30	0	+46	0	+13	-6
80	120	+71	+36	+34	+12	+47	+12	+22	0	+35	0	+54	0	+16	-6
120	180	+83	+43	+39	+14	+54	+14	+25	0	+40	0	+63	0	+18	-7
180	250	+96	+50	+44	+15	+61	+15	+29	0	+46	0	+72	0	+22	-7
250	315	+108	+56	+49	+17	+69	+17	+32	0	+52	0	+81	0	+25	-7
015	400	110	00	Γ.4	10	75	10	00	0	- 7	0	00	0	00	7
315	400 500	+119 +131	+62	+54	+18	+75	+18	+36	0	+57 +63	0	+89 +97	0	+29	-7
400 500	630	+131	+68 +76	+60 +66	+20 +22	+83 +92	+20 +22	+40 +44	0	+03	0		0	+33	-7
500	630	+140	+/0	+00	+22	+92	+22	+44	U	+/0	U	+110	U	+22	-22
630	800	+160	+80	+74	+24	+104	+24	+50	0	+80	0	+125	0	+25	-25
800	1000	+176	+86	+82	+26	+116	+26	+56	0	+90	0	+140	0	+28	-28
1000	1250	+203	+98	+94	+28	+133	+28	+66	0	+105	0	+165	0	+33	-33
1250	1600	+235	+110	+108	+30	+155	+30	+78	0	+125	0	+195	0	+39	-39

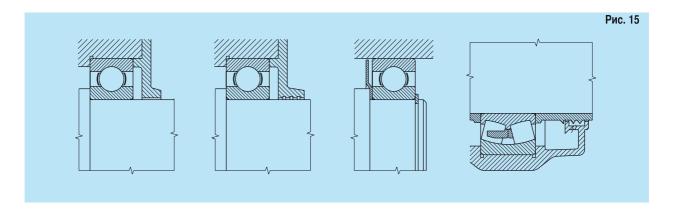
Номинал диаметр		J7(Js7)		K6		K7		M6		M7		N7	P7		
СВЫШС	- -	верхн.	нижн.	верхн.	нижн.	верхн.	нижн.	верхн.	нижн.	верхн.	нижн.	верхн.	нижн.	верхн.	нижн.
ММ		МКМ													
6	10	+8	-7	+2	-7	+5	-10	-3	-12	0	-15	-4	-19	-9	-24
10	18	+10	-8	+2	-9	+6	-12	-4	-15	0	-18	-5	-23	-11	-29
18	30	+12	-9	+2	-11	+6	-15	-4	-17	0	-21	-7	-28	-14	-35
30	50	+14	-11	+3	-13	+7	-18	-4	-20	0	-25	-8	-33	-17	-42
50	80	+18	-12	+4	-15	+9	-21	-5	-24	0	-30	-9	-39	-21	-51
80	120	+22	-13	+4	-18	+10	-25	-6	-28	0	-35	-10	-45	-24	-59
120	180	+25	-14	+4	-21	+12	-28	-8	-33	0	-40	-12	-52	-28	-68
180	250	+30	-16	+5	-24	+13	-33	-8	-37	0	-46	-14	-60	-33	-79
250	315	+36	-16	+5	-27	+16	-36	-9	-41	0	-52	-14	-66	-36	-88
315	400	+39	-18	+7	-29	+17	-40	-10	-46	0	-57	-16	-73	-41	-98
400	500	+43	-20	+8	-32	+18	-45	-10	-50	0	-63	-17	-80	-45	-108
500	630	+35	-35	0	-44	0	-70	-26	-70	-26	-96	-44	-114	-78	-148
630	800	+40	-40	0	-50	0	-80	-30	-80	-30	-110	-50	-130	-88	-168
800	1000	+45	-45	0	-56	0	-90	-34	-90	-34	-124	-56	-146	-100	-190
1000	1250	+52	-52	0	-66	0	-105	-40	-106	-40	-145	-66	-171	-120	-225
1250	1600	+62	-62	0	-78	0	-125	-48	-126	-48	-173	-78	-203	-140	-265


Примеры осевого закрепления подшипника с коническим отверстием непосредственно на конической поверхности вала или с помощью закрепительной или стяжной втулки приведены на рис. 13.

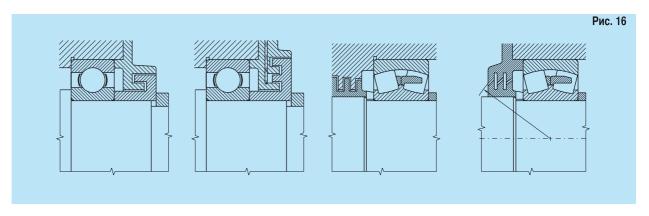
Допустимая осевая нагрузка подшипников, которые закреплены с помощью закрепительной втулки на гладких валах без упора подшипника на уступ вала, расчитывается по формуле:

		$F_a = 3Bd$	[H]
а		допустимая осевая нагрузка на подшипник	[H] .
В	-	ширина подшипника	[MM]
d	_	диаметр отверстия подшипника	[MM]

Если осевое смещение наружного кольца в корпусе нежелательно, то применяется вариант, который использует торцевую опорную поверхность или контактную поверхность крышки подшипника, гайку или стопорное кольцо. Подшипники с канавкой для стопорного кольца (NR) требуют немного пространства и их фиксация проста. Примеры исполнения приведены на рис. 14.


Присоединительные размеры по каждому подшипнику указаны в настоящей публикации в разделе таблиц.

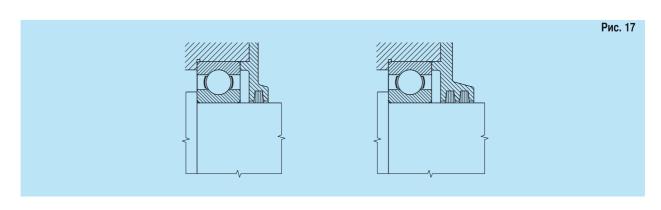
3.3 Уплотнения


Уплотнение пространства с подшипником очень важно, так как вредные вещества, находящиеся вне подшипника, влияют на него и часто его выводят из строя. Уплотнение имеет тоже обратную роль, именно то, что оно препятствуют утечке смазки из подшипника и пространства узла. Поэтому нужно вопросы уплотнений решать с учетом условий работы станка или оборудования, конструкции подшипникового узла, способа смазки, возможностей технического ухода и экономических аспектов производства и эксплуатации.

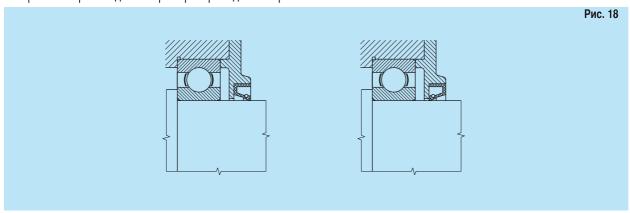
3.3.1 Бесконтактное уплотнение

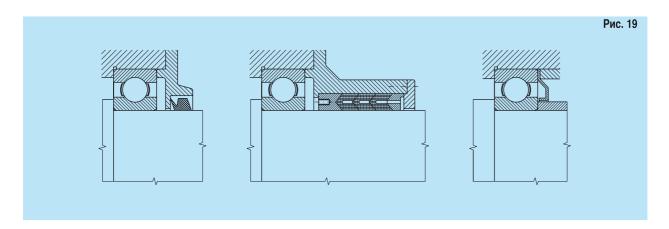
В случае такого уплотнения между невращающейся и вращающейся частями существует лишь узкая щель, которая иногда заполняется пластической смазкой. При таком уплотнении не возникает износ в результате трения и поэтому такое уплотнение удобно использовать для высоких окружных скоростей и для высоких рабочих температур. Примеры щелевого уплотнения приведены на рис. 15.

Другим очень эффективным способом уплотнения является лабиринтное уплотнение, у которого можно повысить уплотняющий эффект повышением числа лабиринтов или увеличением длины уплотняющих щелей. Примеры такого уплотнения показаны на рис. 16.

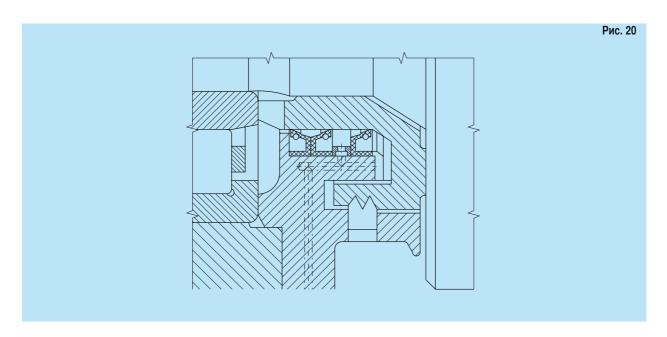

3.3.2 Уплотнение трением

Уплотнение трением создается с помощью упругого или мягкого, однако достаточно прочного и непроницаемого материала, который вставляется между вращающуюся и неподвижную деталь. Такое уплотнение в большинстве случаев дешево и оно удобно для самых различных конструкций. Недостатком является скользящее трение соприкасающихся поверхностей и этим самым ограничение применения для высоких окружных скоростей.


Самым простым уплотнением является войлочное кольцо (рис. 17). Оно удобно для температур работы в пределах с -40° C до $+80^{\circ}$ C и для окружных скоростей до 7 м.с⁻¹ – при этом необходима шероховатость поверхности скольжения максимально $R_a = 0.16$, твердость поверхности минимально 45 HRC или твердое хромирование. Размеры войлочных колец и канавок имеются в соответствующих национальных стандартах.


Очень распространенным способом является уплотнение с помощью манжеты (рис. 18). Манжеты изготовлены из резины или других удобных пластмассовых материалов и усилены металлической арматурой. В зависимости от применяемого материала они удобны для рабочих температур с -30 °C до +160 °C. Допустимая окружная скорость зависит от шероховатости поверхности скольжения:

- до $2m.s^{-1}$ шероховатость составляет макс. $R_{a} = 0.8$,
- до $4m.s^{-1}$ шероховатость составляет макс. $R_a = 0.4$,
- до 12m.s⁻¹ шероховатость составляет макс. $\tilde{R}_{a} = 0, 2,$


Кроме приведенных самых распространенных уплотняющих колец существуют также другие конструкции уплотнения трением с применением уплотнительных колец специальной формы, выпускаемых из резины, пласмассовых материалов и т. п. или других специальных упругих металлических колец. Такое уплотнение выбирается или для узлов с высокими требованиями по уплотнению пространства подшипников (большое загрязнение окружающей среды, высокая температура, влияние химических материалов) или по экономическим основаниям в случае массового и крупносерийного производства. Примеры приведены на рис. 19.

3.3.3 Комбинированное уплотнение

Повышенный уплотняющий эффект достигается путем комбинации бесконтактного уплотнения и уплотнения трением. Такое уплотнение рекомендуется для влажной и загрязненной среды. Пример приведен на рис. 20.

4. Смазка подшипников

Правильная смазка оказывает непосредственное влияние на срок службы. Смазочный материал образует между телом качения и кольцами подшипника несущую смазочную пленку, которая предотвращает контакт металлов. Далее смазывает места, в которых возникает трение, имеет охлаждающий эффект, защищает подшипник от коррозии и в многих случаях уплотняет пространство подшипника.

В большинстве случаев примерно 90 % подшипников смазывается пластической смазкой или жидким маслом. Исключительно используются тоже другие смазочные средства. При решении вопроса вида смазочного материала и способа смазки необходимо учесть условия работы, характерные свойства используемого смазочного материала, конструкцию оборудования и экономичность его эксплуатации.

4.1 Смазка пластическим смазочным материалом

В конструкторской практике смазке пластическим смазочным материалом дается предпочтение перед смазкой жидким маслом с точки зрения простоты подшипникового узла, использования уплотняющих свойств и простого технического ухода.

Для надежной работы подшипника при первой установке подшипника заполняется примерно 1/2 ... 1/3 его свободного пространства чистым смазочным материалом. Большое количество смазки имеет отрицательное воздействие на эксплуатацию. В результате пассивных сопротивлений внутри подшипника происходит нежелательный обогрев и это может вызвать его выход из строя. Подшипники, которые в ходе эксплуатации осуществляют немного движения с точки зрения защиты от коррозии удобно заполнить полностью.

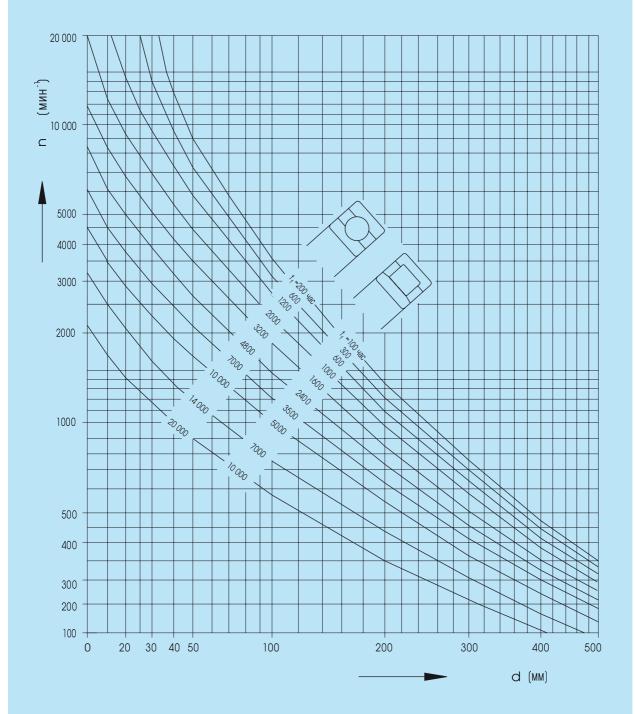
4.1.1 Интервал добавления смазки.

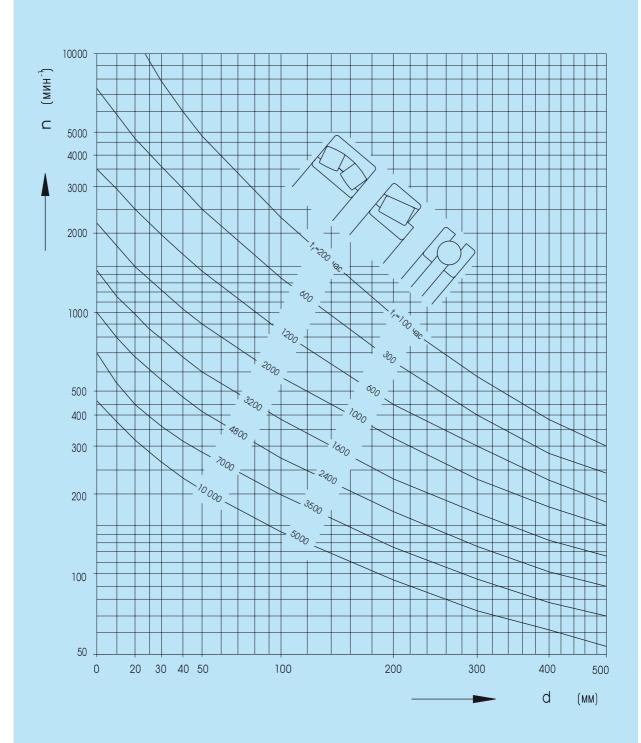
Интервал добавления смазки – это период времени, в ходе которого пластическая смазка обладает необходимыми смазочными качествами.

Интервал добавления смазки зависит от вида и размеров подшипника, частоты вращения, температуры работы и качества смазочного материала. Рекомендуемый интервал добавления смазки по видам подшипников при нормальной нагрузке ($P \le 0.15$ C) и нормальных условиях работы указан в диаграммах на рис. 21 и 22. Диаграммы распространяются на стандартные пластические смазочные материалы для температур до $+70\,^{\circ}$ C. При температурах свыше $+70\,^{\circ}$ C интервал добавления смазки уменьшается для каждых $15\,^{\circ}$ C до половины первоначальной величины. При температурах ниже $+40\,^{\circ}$ C возможно интервал добавления смазки увеличить вдвое.

Для малых, прежде всего однорядных шариковых подшипников интервалы добавления смазки несколько раз дольше, чем долговечность подшипникаи и поэтому в такие подшипники смазка как правило не добавляется.

По этой причине выгодно такие подшипники использовать в исполнении с защитными шайбами или с уплотнениями на обеих сторонах, которые на заводе-изготовителе заполняются пластической смазкой. Для некоторых частот вращения интервал добавления смазки получается мимо кривой диаграммы — это значит достижение допустимого предела для смазки пластическим смазочным материалом и следовательно необходимо принять вариант смазки жидким маслом.


Необходимое количество пластического смазочного материала для его добавления расчитается по формуле:


		Q = 0,005 DB	[୮]
Q	_	количество пластической смазки	[۲]
D	_	наружный диаметр подшипника	[MM]
В	_	ширина подшипника	[MM]

Для подшипников с повышенной частотой вращения, которые нуждаются в более частом добавлении смазки, необходимо после определенного времени удалить отработанную смазку так, чтобы не возникало повышение температуры. Для этих целей удобно использование удаления смазки.

4.1.2 Пластические смазочные материалы для подшипников

Пластические смазочные материалы для смазки подшипников качения выпускаются чаще всего из качественных минеральных или синтетических масел (с добавками), сгущенных металлическими мылами жирных кислот. Пластические смазки должны обладать хорошими смазочными свойствами и высокой химической, термической и механической устойчивостью. Перечень пластических смазочных материалов для подшипников качения приведен в таблице 36.

Свойства пластическ	их смазочных мате	риалов для подшипник	ов качения	Таблица 30
Вид пластической смаз	ВКИ		Свойства	
Сгущающее средство	Базовое масло	Диапазон температуры применения [°C]	Водостойкость	Применение
оредство		применения [Ој		
литиевое мыло	минеральное	-20 ÷ 130	стойкая	универсальная смазка
известковое мыло	минеральное	-20 ÷ 50	очень стойкая	хороший уплотняющий эффект относительно воды
натровое мыло	минеральное	-20 ÷ 100	нестойкая	эмульгирует с водой
алюминиевое мыло	минеральное	-20 ÷ 70	стойкая	хороший уплотняющий эффект относительно воды
комплексное литиевое мыло	минеральное	-20 ÷ 150	стойкая	универсальная смазка
КОМПЛЕКСНОЕ ИЗВЕСТКОВОЕ МЫЛО	минеральное	-20 ÷ 130	очень стойкая	универсальная смазка, удобная для повышенных температур и нагрузок
комплексное натровое мыло	минеральное	-20 ÷ 130	стойкая	смазка удобная для повышенных температур и нагрузок
комплексное алюминиевое мыло	минеральное	-20 ÷ 150	стойкая	смазка удобная для повышенных температур и нагрузок
комплексное бариевое мыло	минеральное	-30 ÷ 140	стойкая	смазка удобная для повышенных температур и нагрузок
бентонит	минеральное	-20 ÷ 150	стойкая	удобная для высоких температур при низкой частоте вращения
полимочевина	минеральное	-20 ÷ 160	стойкая	удобная для высоких температур при средней частоте вращения
литиевое мыло	силиконовое	-40 ÷ 170	очень стойкая	удобная для широкого диапазона температур при средней частоте вращения
комплексное	сложноэфирное	-60 ÷ 140	стойкая	удобная для повышенных температур и частот вращения

4.2 Смазка жидким маслом

Смазка жидким маслом применяется в тех случаях, когда частота вращения в эксплуатации столь высока, что интервал добавления смазки для пластической смазкой бы получился очень короткий. Другой причиной может оказаться тоже необходимость отведения тепла из подшипника или высокая окружающая температура, которая не позволяет применение пластической смазки, или если смазка соседних частей осуществляется по конструктивным причинам жидким маслом (например шестерни в редукторе). Кроме нескольких случаев узлов со сферическими роликоподшипниками такие всегда смазываются жидким маслом.

При смазке жидким маслом необходимо создать такое состояние, чтобы смазка происходила при разгоне и впоследствии и в ходе работы. Чрезмерное количество количество масла повышает его температуру и этим самым и температуру подшипника.

Поступление масла в подшипник обеспечивается путем различных конструктивных способов, среди которых самым распространенным является смазка масляной ванной с уровнем масла, достигающим до центра нижнего подшипника, смазка циркулирующим маслом, смазка впрыском масла, смазка масляным туманом и т. п.

4.2.1 Жидкие масла для подшипников

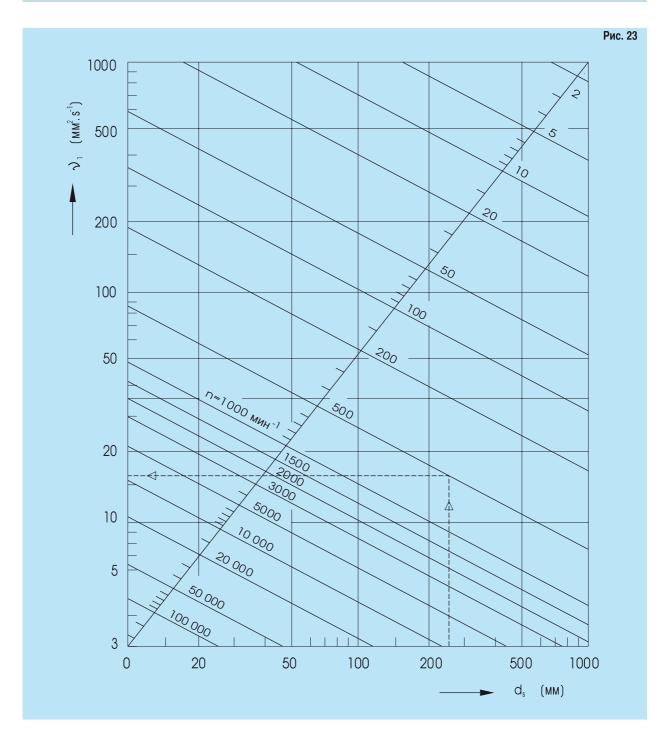
Для смазки подшипников используются как правило рафинированное масло с хорошей химической устойчивостью, которая может улучшаться с помощью антиокислительных добавок.

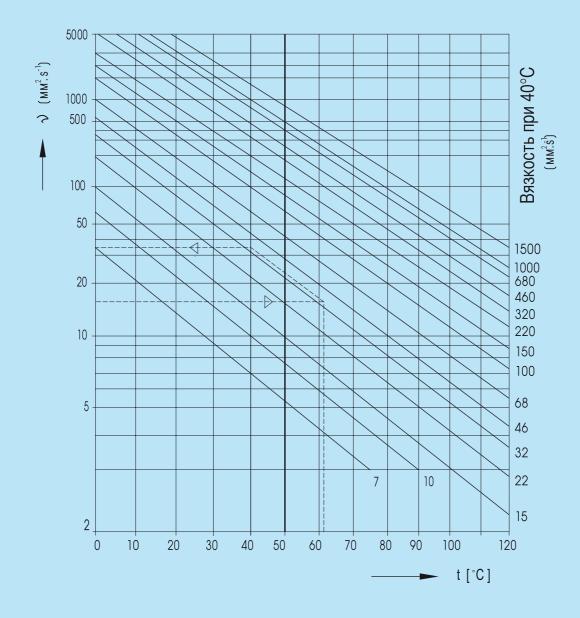
Решающим свойством масла является кинематическая вязкость падает с возрастающей температурой. Подходящую вязкость масла v_1 возможно определить по диаграмме на рис. 23 в зависимости от среднего диаметра подшипникаг $d_s = (d+D)/2$ и частоте вращения п. Если известна температура работы, или если возможно ее определить, то по диаграмме на рис. 24 определяется подходящее масло и вязкость \varkappa при международной стандартизованной температуре 40° C, которая необходима для расчета соотношения \varkappa .

При соотношении $\varkappa < 1$ рекомендуется использовать масло с добавками EP, которые увеличивают несущую способность масляной пленки. При падении величины \varkappa ниже 0,4 используются всегда лишь масла с добавкой EP.

Если соотношение κ выше 1, то достигается в эксплуатации повышенная надежность исполнения соответствующего узла.

Пример:


- подшипник d = 180 мм, D = 320 мм, d = 250 мм
- частота вращения n = 500 мин⁻¹
- предпологаемая рабочая температура 60°C


Для этих параметров по диаграмме на рис. 23 выходит минимальная кинематическая вязкость $v_1 = 17 \text{ mm}^2.\text{s}^{-1}$.

Если учесть рабочую температуру 60 °C, то должна кинематическая вязкость используемого масла ν , выбранного по диаграмме на рис. 24, при стандартизованной температуре 40 °C, составлять минимально 35 мм².с¹.

Для упорных роликоподшипников со сферическими роликами кинаматическая вязкость смазочного масла определяется приблизительно в зависимости от n x d, где n – частота вращения в оборотах в минуту и d – диаметр отверстия в мм, по таблице 37. Более низкие величины вязкости относятся к подшипникам с меньше нагрузкой, для которых $P_a \leq 0.1 \ C_a$. Более высокие величины действительны для $P_a > 0.1 \ C_a$.

Кинематическая вязкость масла	
Trinomatin toolaan Briotootb maaria	
мм²s ⁻¹ при 40°C	
250 550	
100 250	
45 100	
30 80	
	250 550 100 250 45 100

4.3 Смазка твердыми смазочными материалами

Твердые смазочные материалы используются для смазки подшипников лишь в тех случаях, когда пластические смазки или жидкие масла не могут выполнять требования по надежной смазке в условиях предельного трения или с точки зрения стойкости относительно высоких температур работы, химических влияний и т. п. В таких случаях рекомендуется вопрос проконсультировать с поставщиком.

5. Установка и демонтаж подшипников

Очень важным условием, помимо применения удобных монтажного или-же демонтажного оснащения, является обеспечение того, чтобы эта оснастка была чистой и чтобы вся работа осуществлялась в чистой среде. В отрицательном случае имеют загрязнения решающее влияние на работу подшипника в эксплуатации, а также могут в зависимости от их происхождения вызвать даже аварию подшипника. Условия чистоты должны также соблюдаться в ходе подготовки всех смазочных средств и деталей, связанным с подшипниковым узлом.

Новые подшипники на заводе-изготовителе консервируются средствами, которые до установки подшипника не нужно удалять. Подшипник в интересах содержания чистоты вынимается из упаковки лишь непосредственно под монтаж. Лишь в исключительных случаях из подшипника удаляется консервационное средство. Для этого используется:

- технический бензин с добавлением 5 ... 10% масла
- бензол
- дизельное топливо
- безводное масло

После расконсервации необходимо подшипник смазать маслом, защитить относительно загрязнения и по возможности незамедлительно установить на место назначения.

До установки необходимо проконтролировать размеры установочных поверхностей, их состояние с точки зрения чистоты и возможных повреждений.

Установка подшипников с цилиндрическим отверстием

Подшипники в узлы устанавливаются или в холодном или в подогретом состоянии. Подшипники небольшие по размерам в большинстве случаев устанавливаются в холодном состоянии.

Усилие, необходимое для установки, создается ударами молотка или-же удобнее с помощью пресса. В обеих случаях используются монтажные приспособления. При установке не допускается передавать монтажное усилие посредничеством тел качения. Поэтому в ходе воздействия монтажного усилия приспособление должно опираться на то кольцо, которое устанавливается, или-же на оба кольца.

Установка в подогретом состоянии применяется в случае крупных подшипников, кольца которых устанавливаются с боьше натягом. Максимальная температура подогрева подшипника представляет до 100°C.

Установка подшипников с коническим отверстием

Подшипники с коническим отверстием закрепляются на валу с помощью закрепительных или стяжных втулок, или-же непосредственно на коническую часть вала. Надежное закрепление достигается или напрессованием внутреннего кольца с помощью гайки, или путем установки втулки. В обеих случаях внутреннее кольцо растягивается и при этом происходит уменьшение радиального зазора в подшипнике.

При установке двухрядных самоустанавливающихся шариковых подшипников возможно гайку закрепительного устройства подтянуть до такой степени, чтобы наружное кольцо стало возможным легко вращать и наклонить.

Двухрядные подшипники со сферическими роликами закрепляется с больше натягом. Надежность закрепления конторлируется на основании уменьшения радиального зазора с помощью щупов или измерением осевого смещения внутреннего кольца на валу или-же конической втулке. Начальное положение для измерения смещения достигается тогда, когда контактные поверхности (кольца, втулки, вала) прилегают друг на друга по всей установочной поверхности. Величины для установки двухрядных подшипников со сферическими роликами с коническим отверстием приведены в таблице 38.

Установі	ка двухряді	ных подш	ипников со (сферическ	ими ролика	ами и кони	ческим отв	верстием		Таблица	38
Диаметр	отверстия	Уменьц ралиаль	иение Бного зазора	Осевое см	иещение на	конусе 1:1	2			стимый радиал ка с зазором	Ь-
d		Родинали	or o ddoopa	на валу		на втул	ке			na o oacopom	
свыше	до	МИН	макс	мин	макс	мин	макс	нормальн	ый С3	C4	
ММ		МКМ		ММ				МКМ			
00	40	00	٥٢	0.05	0.4	0.05	0.45	45	00	40	
30	40	20	25	0,35	0,4	0,35	0,45	15	20	40	
40	50	25	30	0,4	0,45	0,45	0,5	20	30	50	
50	65	30	40	0,45	0,6	0,5	0,7	25	35	55	
65	80	40	50	0,6	0,75	0,7	0,85	25	40	70	
80	100	45	60	0,7	0,9	0,75	1	35	50	80	
100	120	50	70	0,75	1,1	0,8	1,2	50	65	100	
				,	,	,	,				
120	140	65	90	1,1	1,4	1,2	1,5	55	80	110	
140	160	75	100	1,2	1,6	1,3	1,7	55	90	130	
160	180	80	110	1,3	1,7	1,4	1,9	60	100	150	
180	200	90	130	1,4	2	1,5	2,2	70	100	160	
200	225	100	140	1,6	2,2	1,7	2,4	80	120	180	
225	250	110	150	1,7	2,4	1,8	2,6	90	130	200	
250	280	120	170	1,9	2,7	2	2,9	100	140	220	
280	315	130	190	2	3	2,2	3,2	110	150	240	
315	355	150	210	2,4	3,3	2,6	3,6	120	170	260	
313	333	150	210	۷,4	٥,٥	۷,0	3,0	120	170	200	
355	400	170	230	2,6	3,6	2,9	3,9	130	190	290	
400	450	200	260	3,1	4,1	3,4	4,4	130	200	310	
450	500	210	280	3,3	4,4	3,6	4,8	160	230	350	
				,	,	,	,				
500	560	240	320	3,7	5	4,1	5,4	170	250	360	
560	630	260	350	4	5,4	4,4	5,9	200	290	410	
630	710	300	400	4,6	6,2	5,1	6,8	210	310	450	
710	800	340	450	5,3	7	5,8	7,6	230	350	510	
800	900	370	500	5,7	7,8	6,3	8,5	270	390	570	

Таблицы подшипников качения

Однорядные шариковые подшипники	
Однорядные радиально-упорные шариковые подшипники	
Двухрядные радиально-упорные шариковые подшипники	
Двухрядные шариковые радиальные сферические подшипники	
Однорядные роликовые подшипники с короткими цилиндрическими роликами	
Двухрядные роликовые подшипники с короткими цилиндрическими роликами	
Однорядные роликовые подшипники с игольчатыми роликами	
Двухрядные роликовые подшипники со сферическими роликами	
Роликовые подшипники с коническими роликами	
Упорные шариковые подшипники	
Упорные роликовые подшипники со сферическими роликами	
Закрепительные подшипники и опоры для подшипников	
Шарнирные подшипники	
Сопутствующие части подшипников качения	
Шарики, цилиндрические ролики	0
Специальные подшипники	

Однорядные шариковые подшипники

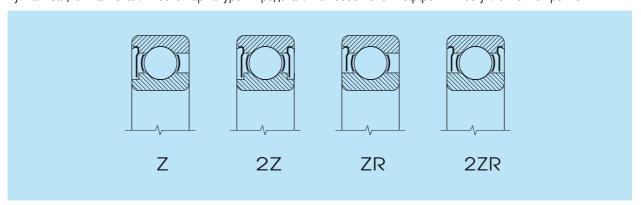
Однорядные шариковые подшипники в качестве самого распространенного вида подшипников проектируются неразъемными и без канавки для ввода шариков. Путем оптимальных размеров и числа шариков достигается хорошее примыкание тел качения к дорожкам качения и достигается относительно высокая грузоподъемность. Воспринимают радиальные и осевые нагрузки в обеих направлениях и удобны тоже для высоких частот вращения.

Однорядные шариковые подшипники разъемные, тип E и BO, имеют конструкцию наружного кольца выполненную таким образом, что существует возможность самостоятельно устанавливать внутреннее кольцо с сепаратором и телами качения. Подшипники выпускаются с диаметром отверстия d = 20 мм и удобны для небольших нагрузок и быстроходных подшипниковых узлов.

Основные размеры

Основные размеры подшипников, кроме однорядных шариковых разъемных типа E и BO, соответствуют стандарту ISO 15.

Размеры канавок для стопорных колец отвечают стандарту ISO 464...

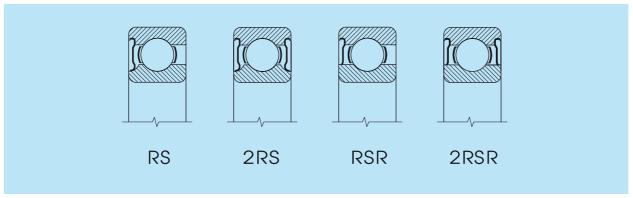

Обозначения

Обозначения подшипников в основном исполнении и в стандартных вариантах (Z, RS, 2Z, 2RS, N) приведены в разделе таблиц настоящей публикации. Отличия подшипников по сравнению с основным исполнением обозначаются с помощью дополнительных знаков (раздел 2.2).

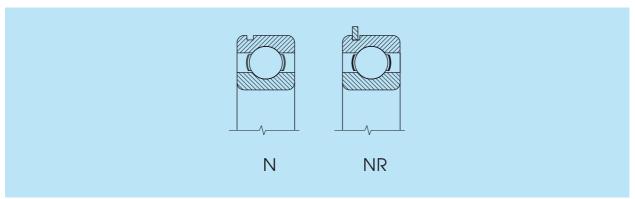
Подшипники с шайбами

Однорядные шариковые подшипники с шайбами на одной или обеих сторонах выпускаются с защитными шайбами / Z, 2Z, ZR, 2ZR/ или уплотнениями / RS, 2RS, RSR, 2RSR/ в качестве неразъемных.

Защитные шайбы создают бесконтактное уплотнение. Уплотнения изготовлены из резины, которая нанесена вулканизацией на металлической арматуре и представляют собой очень эффективное уплотнение трением.



Подшипники с защитными шайбами на обеих сторонах заполняются соответствующей пластической смазкой, которая обеспечивает надежные условия смазки в ходе срока службы подшипника. Эти подшипники удобны для рабочей температуры в пределах -30 ... +110°C. Поставку подшипников с другой пластической смазкой необходимо согласовать с поставщиком.


Подшипники с канавкой для стопорного кольца

Для простого варианта фиксации относительно осевого смещения в корпусе однорядные шариковые подшипники выпускаются с канавкой для стопорного кольца на наружном кольце (N). В случае, если подшипник поставляется вместе с вставленным стопорным кольцом, то несет обозначение (NR). Подшипники с канавкой для стопорного кольца могут поставляться тоже в комбинации с установленными защитными шайбами.

Сепаратор

Однорядные шариковые подшипники имеют в основном исплонении как правило сепаратор как это показано в таблице. Знак материала (J, Y, M, F) и исполнение сепаратора в большинстве случаев не указывается.

Для нужд специальных подшипниковых узлов выпускаются тоже подшипники с другими видами сепараторов: полиамид (TNH, TNB) и текстолит (ТВ). Применение таких подшипников необходимо заранее согласовать..

Подшипники с листоштампованным стальным или латунным сепаратором	Подшипники с массивным стальным или латунным сепаратором
d<10mm (619/2 629) ¹⁾	
-	61926
16001 16030	in the second se
6000 6034	6036 6040
6200 6230	6232 6240
6300 6324	6326 6330
6403 6417	6418
E15 E20, BO17	
1) Подшипник 618/8 выпускается с массивным сепаратором и	из полиамида (TNH)

Точность

Однорядные шариковые подшипники выпускаются по нормальному классу точности Р0 – этот знак не указывается. Предельные величины точности размеров и хода совпадают с данными стандарта ISO 199 и ISO 492. Исключением являются лишь однорядные шариковые подшипники разъемные типа E и BO, по которым наружный диаметр имеет предельное отклонение D +0,01/0,00 мм.

Радиальный зазор

Однорядные шариковые подшипники, которые поставляются без указания знака радиального зазора, изготовлены с нормальным радиальным зазором. Величины радиальных зазоров соответствуют стандарту ISO 5753.

Уровень вибраций

Стандартно выпускаемые однорядные шариковые подшипники имеют нормальный уровень вибраций, контролируемый заводом-изготовителем. Подшипники по классу точности Р5 и выше имеют уровень вибраций С6. Для специальных вариантов подшипниковых узлов выпускаются подшипники с пониженным уровнем вибраций С6, С06, С66.

Коническое отверстие

Для некоторых менее ответственных подшипниковых узлов могут выпускаться определенные размеры однорядных шариковых подшипников типа 62 и 63 с коническим отверстием с конусностью 1:12. Закрепление подшипников на цилиндрический вал осуществляется с помощью закрепительной втулки или непосредственно на коническую поверхность вала.

Подшипники для узлов, работающих при высоких температурах.

Для подшипниковых узлов, работающих при температуре до 400°C поставляются однорядные шариковые подшипники с соответствующим радиальным зазором по техническим условиям, согласованным изготовителем и заказчиком.

Такие подшипники имеют пониженное значение основной динамической грузоподъемности на 30 % по сравнению с подшипниками нормального исполнения. Применение смазочных материалов рекомендуется проконсультировать с поставщиком.

Наклон

Для однорядных шариковых подшипников допускается лишь малый взаимный наклон подшипниковых колец и поэтому отклонение соосности установочных мест может быть совсем небольшим. Несоосность вызывает возникновение дополнительной нагрузки и этим снижается долговечность подшипника.

Величины допустимого наклона при нормальных условиях работы приведены в таблице.

Тип подшипника	Нагрузка небольшая (F_r <0,15 C_{or})	большая (F _r ≥0,15C _{or})
618, 619, 160, 60	2' 6'	5' 10'
62, 63, 64	5' 10'	8' 16'

Радиальная эквивалентная динамическая нагрузка

Однорядные шариковые подшипники:

$$P_r = XF_r + YF_a$$
 [KH]

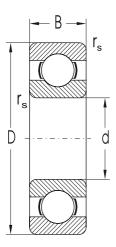
		Радиальный зазор														
	нормальный					C3					C4	C4				
F _a		F _a /F _c ≦	≦e	$F_a/F_r > \epsilon$)		F _a /F _c	≦e	F _a /F _r >e)		F _a /F _r	≦e	$F_a/F_r > \epsilon$	9	
$\frac{F_a}{C_{or}}$	е	X	Υ	X	Υ	е	X	Υ	X	Υ	е	X	Υ	X	Υ	
	е	Χ	Υ	Χ	Υ	е	Χ	Υ	Χ	Υ	е	Χ	Υ	Χ	Υ	
0.025	0.22	1	0	0.56	2.0	0.31	1	0	0,46	1.75	0.4	1	0	0.44	1.42	
0.04	0.24	1	0	0.56	1.8	0.33	1	0	0.46	1.62	0.42	1	0	0.44	1.36	
0.070	0.27	1	0	0.56	1.6	0.36	1	0	0.46	1.46	0.44	1	0	0.44	1.27	
0.13	0.31	1	0	0.56	1.4	0.41	1	0	0.46	1.30	0.48	1	0	0.44	1.16	
0.25	0.37	1	0	0.56	1.2	0.46	1	0	0.46	1.14	0.53	1	0	0.44	1.05	
0.5	0.44	1	0	0.56	1.0	0.54	1	0	0.46	1.0	0.56	1	0	0.44	1.0	

Значения коэффициентов X и Y действительны при предположении, что установка на валу и в корпусе выполнены в пределах, рекомендуемых для малой и средней нагрузки (таблица 28 и 29) и что в ходе работы не возникнет существенное уменьшение радиального зазора в результате влияния рабочей температуры (разница температуры между внутренним и наружным кольцом макс. 10°C)

Однорядные шариковые подшипники разъемные:

$$P_r = F_r$$
 для $F_a / F_r \le 0.2$ [кН] $P_r = 0.5 F_r + 2.5 F_a$ для $F_a / F_r > 0.2$ [кН]

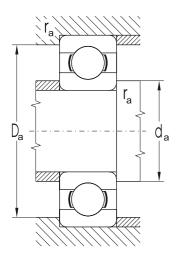
Радиальная эквивалентная статическая нагрузка


Однорядные шариковые подшипники:

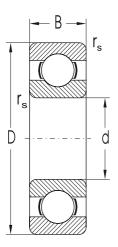
$$P_{or} = 0.6F_{r} + 0.5F_{a} \qquad (P_{or} \ge F_{r}) \qquad [\kappa H]$$

Однорядные шариковые подшипники разъемные:

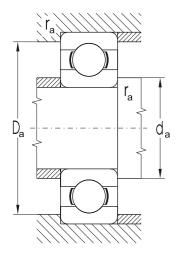
$$P_{or} = 0.9F_r + 0.3F_a$$
 $(P_{or} \ge F_r)$ [KH]


Однорядные шариковые подшипники d = 2 ... 17 мм

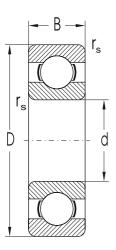
Размеры					рузоподъемность	Предельная ча		Обозначение подшипника		
d	D	В	r _s мин	динамическ С _г	ая статическая С _{ог}	вращения для пластической смазкой	смазки жидким маслом			
ММ				кН		МИН ⁻¹				
2	6	2,3	0,10	0,279	0,090	63000	79000	619/2		
3	10	4	0,15	0,645	0,229	40000	50000	623		
4	13	5	0,20	1,168	0,412	38000	45000	624		
т	16	5	0,30	1,875	0,677	35000	42000	634		
5	13	4	0,20	1,079	0,432	47000	56000	619/5		
U	16	5	0,30	1,875	0,677	35000	42000	625		
	19	6	0,30	2,838	1,078	35000	42000	635		
6	15	5	0,20	1,470	0,599	42000	50000	619/6		
5	19	6	0,30	2,838	1,078	35000	42000	626		
7	19	6	0,30	2,838	1,078	35000	42000	607		
'	22	7	0,30	3,282	1,356	35000	42000	627		
8	16	4	0,20	1,550	0,722	35000	42000	618/8TNH		
•	22	7	0,30	3,282	1,356	35000	42000	608		
9	24	7	0,30	3,668	1,640	35000	42000	609		
	26	8	0,30	4,557	1,955	35000	42000	629		
0	26	8	0,30	4,557	1,955	28000	33000	6000		
•	30	9	0,60	6,047	2,510	25000	30000	6200		
	30	14	0,60	6,047	2,510	25000	30000	62200		
	35	11	0,60	8,072	3,430	22000	27000	6300		
2	28	7	0,30	5,094	2,360	25000	30000	16001		
	28	8	0,30	5,094	2,360	25000	30000	6001		
	32	10	0,60	6,905	3,100	22000	27000	6201		
	32	14	0,60	6,905	3,100	22000	27000	62201		
	37	12	1,00	9,759	4,235	20000	24000	6301		
5	32	8	0,30	5,594	2,860	21000	25000	16002		
	32	9	0,30	5,594	2,865	21000	25000	6002		
	35	11	0,60	7,718	3,745	20000	24000	6202		
	35	14	0,60	7,718	3,745	20000	24000	62202		
	42	13	1,00	11,310	5,330	18000	21000	6302		
7	35	8,0	0,3	5,999	3,265	20000	24000	16003		
	35	10,0	0,3	6,001	3,267	20000	24000	6003		
	40	12,0	0,6	9,534	4,734	18000	21000	6203		
	40	16,0	0,6	9,534	4,734	18000	21000	62203		
	47	14,0	1,0	13,565	6,560	16000	19000	6303		
		,0	.,0	,,,,,,,,	2,300					



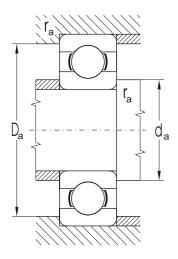
Присое	единительны	е размеры		Macca
d	едини гельны d _a	е размеры D _a	r _a	WIGOOd
ŭ	a	a	'a	~
	МИН	макс	макс	
MM				КГ
2	3,2	4,8	0,1	0,0004
3	4,2	8,5	0,1	0,0015
4	5,6	11,2	0,2	0,0032
	6,2	13,4	0,3	0,0050
5	6,6	11,5	0,2	0,0025
	7,0	14,0	0,3	0,0047
	7,2	15,8	0,3	0,0090
6	7,8	13,0	0,2	0,0040
	8,2	17,0	0,3	0,0080
7	9,0	17,2	0,3	0,0090
	9,2	19,0	0,3	0,0123
8	9,8	14,0	0,2	0,0030
	10,	20,0	0,3	0,0150
9	11	22,0	0,3	0,0180
3	11	24,0	0,3	0,0200
10	12	24,0	0,3	0,0200
10	14	26,0	0,6	0,0190
			0,6	
	14	26,0	0,6	0,0400
10	14	31,0	0,6	0,0540
12	14	26,0	0,3	0,0200
	14	26,0	0,3	0,0220
	16	28,0	0,6	0,0370
	16	28,0	0,6	0,0450
	17	32,0	1,0	0,0610
15	17	30,0	0,3	0,0270
	17	30,0	0,3	0,0300
	19	31,0	0,6	0,0460
	19	31,0	0,6	0,0540
	20	36,0	1,0	0,0850
17	19	33	0,3	0,0320
	19	33	0,3	0,0400
	21	36	0,6	0,0730
	21	36	0,6	0,0830
	23	41	1,0	0,0050
	20	41	1,0	0,1130


Однорядные шариковые подшипники d = 20 ... 50 мм

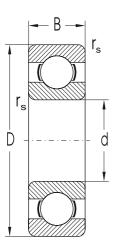
Размеры					рузоподъемность	Предельная ча		Обозначение подшипника
d	D	В	r _s мин	динамическ С _г	статическая С _{ог}	вращения для с пластической смазкой	смазки жидким маслом	
ММ				кН		мин ⁻¹		
20	42	8,0	0,3	9,371	4,972	17000	20000	16004D
20	42	12,0	0,6	9,371	4,972	17000	20000	6004
	47	14,0	1,0	12,774	6,553	15000	18000	6204
	47	18,0	1,0	12,774	6,553	15000	18000	62204
	47	20,6	1,0	12,774	6,553	15000	18000	63204
	52	15,0	1,1	15,866	7,811	14000	17000	6304
	52	21,0	1,1	15,866	7,811	14000	17000	62304
25	47	8,0	0,3	6,950	4,550	14000	17000	16005
	47	8,0	0,3	10,070	5,806	14000	17000	16005D
	47	12,0	0,6	10,070	5,806	14000	17000	6005
	52	15,0	1,0	14,029	7,940	12000	15000	6205
	52	18,0	1,0	14,029	7,940	12600	15000	62205
	62	17,0	1,1	21,123	10,806	11000	13000	6305
	62	24,0	1,1	21,123	10,806	11000	13000	62305
	80	21,0	1,5	36,000	19,200	9400	11000	6405
30	55	9,0	0,3	11,200	7,360	12000	14000	16006
	55	13,0	1,0	13,243	8,250	12000	14000	6006
	62	16,0	1,0	19,443	11,186	11000	13000	6206
	62	20,0	1,0	19,443	11,186	11000	13000	62206
	72	19,0	1,1	29,701	15,678	10000	12000	6306
	90	23,0	1,5	43,000	23,700	8400	10000	6406
35	62	9,0	0,3	9,960	7,362	10600	12600	16007
	62	14,0	1,0	15,956	10,328	10600	12600	6007
	72	17,0	1,1	25,663	15,227	9400	11000	6207
	80	21,0	1,5	33,367	19,230	8400	10000	6307
	100	25,0	1,5	55,200	31,000	7500	8900	6407
10	68	9,0	0,3	12,667	9,617	9400	11000	16008
	68	15,0	1,0	16,824	11,493	9400	11000	6008
	80	18,0	1,1	32,633	19,887	8400	10000	6208
	90	23,0	1,5	40,760	24,170	7900	9400	6308
	110	27,0	2,0	63,100	36,200	6700	7900	6408
15	75	10,0	0,6	15,659	12,172	8400	10000	16009
	75	16,0	1,0	21,100	15,300	8400	10000	6009
	85	19,0	1,1	32,678	20,325	7900	9400	6209
	100	25,0	1,5	52,804	31,715	7100	8400	6309
.0	120	29,0	2,0	76,500	44,700	6000	7100	6409
50	80	10,0	0,6	16,092	13,147	7900	9400	16010
	80	16,0	1,0	21,720	16,650	7900	9400	6010
	90	20,0	1,1	35,066	23,226	7100	8400	6210
	110	27,0	2,0	61,754	37,754	6300	7500	6310
	130	31,0	2,1	87,400	52,100	5600	6700	6410



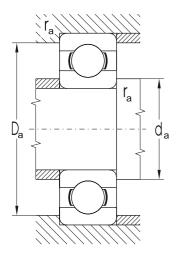
Присо	единительные	е размеры		Macca
d	d _а мин	D _а макс	r _a Makc	~
ММ				КГ
00	00	40	0.0	0.0500
20	22	40	0,3	0,0500
	24 25	38 42	0,6 1,0	0,0700 0,1080
	25	42	1,0	0,1000
	25	42	1,0	0,1460
	26	45	1,0	0,1450
	26	45	1,0	0,2000
25	27	43	0,3	0,0530
	27	43	0,3	0,0530
	28	43	0,6	0,0820
	30	47	1,0	0,1290
	30	47	1,0	0,1500
	31	55	1,0	0,2300
	31	55	1,0	0,3200
	34	70	1,5	0,5300
30	32	53	0,3	0,0870
	34	50	1,0	0,1190
	35	57	1,0	0,2000
	35	57	1,0	0,2400
	36	65	1,0	0,3310
	39	80	1,5	0,7250
35	37	60	0,3	0,1110
	39,5	57	1,0	0,1540
	42	65 71	1,0	0,2840
	42	71	1,5	0,4470 0,9540
40	44 42	90 62	1,5 0,3	0,9540
40	44	63	1,0	0,1250
	47	73	1,0	0,1910
	47	81	1,0	0,6250
	50	97	2,0	1,12300
45	49	71	1,0	0,1700
	49	70	1,0	0,2410
	52	78	1,0	0,4040
	52	91	1,5	0,8280
	55	107	2,0	1,5400
50	54	76	0,6	0,1880
	54	75	1,0	0,2600
	57	83	1,0	0,4600
	60	100	2,0	1,0600
	63	116	2,0	1,8900


Однорядные шариковые подшипники d = 55 ... 90 мм

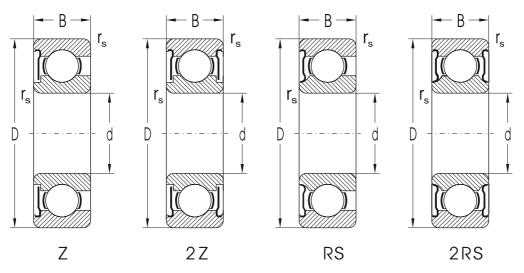
Размеры					рузоподъемность	Предельная ча		Обозначение подшипника
					кая статическая	вращения для		
d	D	В	r _s	C_r	C_{or}	пластической смазкой	жидким	
			МИН			СМАЗКОИ	маслом	
мм				кН		мин ⁻¹		
55	90	18,0	1,1	28,216	21,318	7100	8400	6011
55	100	21,0	1,5	43,350	29,397	6700	7900	6211
	120	29,0	2,0	71,000	44,700	5600	6700	6311
	140	33,0	2,1	100,000	61,900	5300	6300	6411
60	95	18,0	1,1	29,343	23,256	6700	7900	6012
00	110	22,0	1,5	52,846	35,786	6000	7100	6212
	130	31,0	2,1	81,500	52,100	5300	6300	6312
	150	35,0	2,1	110,000	69,400	4700	5600	6412
65	100	11,0	0,6	21,200	19,600	6300	7500	16013
55	100	18,0	1,1	30,500	25,100	6300	7500	6013
	120	23,0	1,5	57,210	40,011	5300	6300	6213
	140	33,0	2,1	92,600	59,600	5000	6000	6313
	160	37,0	2,1	117,950	78,329	4500	5300	6413
70	110	13,0	0,6	27,600	25,100	5600	6700	16014
	110	20,0	1,1	37,960	30,959	5600	6700	6014
	125	24,0	1,5	62,000	43,800	5300	6300	6214
	150	35,0	2,1	104,000	63,100	4700	5600	6314
	180	42,0	3,0	144,000	104,000	4000	4700	6414
75	115	13,0	0,6	28,700	26,600	5300	6300	16015
	115	20,0	1,1	39,747	33,170	5300	6300	6015
	130	25,0	1,5	66,179	49,311	5000	6000	6215
	160	37,0	2,1	114,000	76,400	4200	5000	6315
	190	45,0	3,0	152,525	112,922	3800	4500	6415
30	125	14,0	0,6	32,900	31,600	5000	6000	16016
	125	22,0	1,1	47,500	39,800	5000	6000	6016
	140	26,0	2,0	72,200	53,100	4700	5600	6216
	170	37,0	2,1	122,850	86,226	4000	4700	6316
	200	48,0	3,0	163,587	124,984	3500	4200	6416
35	130	14,0	0,6	34,100	32,900	4700	5600	16017
	130	22,0	1,1	49,794	42,609	4700	5600	6017
	150	28,0	2,0	83,299	63,675	4200	5000	6217
	180	41,0	3,0	132,507	96,069	3800	4500	6317
	210	52,0	4,0	174,000	136,000	3300	4000	6417
0	140	24,0	1,5	58,400	49,200	4500	5300	6018
	160	30,0	2,0	96,200	70,800	4000	4700	6218
	190	43,0	3,0	144,000	108,000	3500	4200	6318
	225	54,0	4,0	192,000	158,000	3200	3800	6418



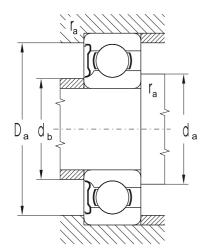
Присое	динительные	е размеры		Macca
d	d _а мин	D _а макс	r _а макс	~
ММ				КГ
55	60	84	1,0	0,3830
	62	91	1,5	0,5970
	65	110	2,0	1,3800
00	68	126	2,0	2,2900
60	65 67	88	1,0	0,4110
	67	101	1,5	0,7710
	72	118	2,0	1,7200
0.5	73	136	2,0	2,7600
65	69	96	0,6	0,3000
	70	93	1,0 1,5	0,4370
	72	111	1,5	0,9970
	76	128	2,0	2,1000
70	78	146	2,0	3,2800
70	74	106	0,6	0,4330
	75	103	1,0	0,6040
	77	116	1,5	1,0700
	81	138	2,0	2,5400
	85	164	2,5	4,8500
75	79	111	0,6	0,4570
	80	108	1,0	0,6380
	82	122	1,5	1,1800
	86	148	2,0	3,0600
	90	174	2,5	5,7400
80	84	121	0,6	0,5970
	85	118	1,0	0,8450
	90	130	2,0	1,4000
	91	158	2,0	3,6300
	95	184	2,5	6,7200
85	89	126	0,6	0,6260
	90	123	1,0	0,8920
	95	140	2,0	1,8000
	98	166	2,5	4,2000
	105	190	3,0	7,8800
90	96	132	1,5	1,1700
	100	150	2,0	2,1600
	103	176	2,5 3,0	4,9500
	110	205	3,0	11,4000


Однорядные шариковые подшипники d = 95 ... 170 мм

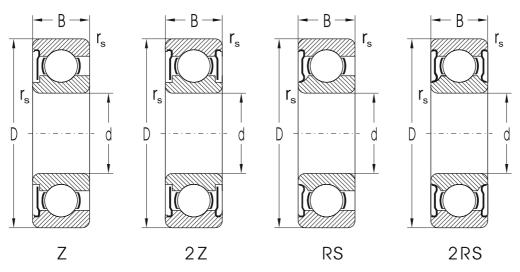
Размеры				Основная грузоподъемность динамическая		Предельная частота вращения для смазки		Обозначение подшипника
d	D	В	r _s мин	C _r	C _{or}	пластической смазкой	і жидким маслом	
ММ				кН		МИН ⁻¹		
95	145	16,0	1,0	42,300	41,500	4200	5000	16019
	145	24,0	1,5	60,700	54,100	4200	5000	6019
	170	32,0	2,1	108,000	81,000	3800	4500	6219
	200	45,0	3,0	152,444	117,366	3300	4000	6319
100	150	16,0	1,0	44,000	43,800	4200	5000	16020
	150	24,0	1,5	60,096	54,244	4200	5000	6020
	180	34,0	2,1	123,000	92,600	3500	4200	6220
	215	47,0	3,0	174,000	141,000	3200	3800	6320
105	160	26,0	2,0	72,200	65,600	4000	4700	6021
	190	36,0	2,1	132,927	104,833	3300	4000	6221
	225	49,0	3,0	185,000	153,000	3000	3500	6321
110	170	19,0	1,0	57,600	56,200	3800	4500	16022
	170	28,0	2,0	82,500	72,200	3800	4500	6022
	200	38,0	2,1	144,000	117,000	3200	3800	6222
120	180	19,0	1,0	61,000	63,100	3300	4000	16024
	180	28,0	2,0	85,000	79,400	3300	4000	6024
	215	40,0	2,1	144,000	117,000	3000	3500	6224
130	180	24,0	1,5	65,503	67,193	3200	3800	61926
	200	33,0	2,0	106,986	99,667	3200	3800	6026
	230	40,0	3,0	153,000	133,000	2800	3300	6226
140	210	33,0	2,0	110,000	108,000	3000	3500	6028
	250	42,0	3,0	166,000	150,000	2500	3000	6228
150	225	35,0	2,1	126,000	126,000	2700	3200	6030
100	270	45,0	3,0	190,000	181,000	2200	2700	6230
170	260	42,0	2,1	168,000	171,000	2200	2700	6034
170	200	12,0	۷,۱	100,000	171,000	2200	2100	0004



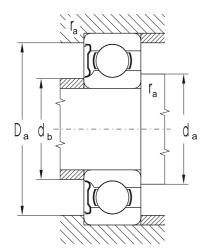
Присое	единительны	е размеры		Macca
d	d _а мин	D _а макс	r _a макс	~
ММ				КГ
95	100	140	1,0	0,8900
33	102	137	1,5	1,2200
	107	158	2,0	2,6000
	109	186	2,5	5,7200
100	105	145	1,0	0,9100
	106	142	1,5	1,2700
	112	169	2,0	3,1300
	113	201	2,5	7,0700
105	113	151	2,0	1,5900
	117	178	2,0	3,7400
	119	211	2,5	8,0000
110	115	165	1,0	1,4600
	118	161	2,0	1,9500
100	122	188	2,0	4,3700
120	125	175	1,0	1,8000
	128	171	2,0	2,1000
100	132	203	2,0	5,1500
130	137 138	172	1,0	1,8600
	144	191 216	2,0 2,5	3,2600 6,2000
140	148	200	2,0	3,3900
140	154	236	2,5	7,5600
150	159	213	2,0	4,1600
130	164	256	2,5	9,8500
170	179	248	2,0	6,9100
170	170	210	2,0	0,0100


Однорядные шариковые подшипники с шайбой d = 3 ... 25 мм

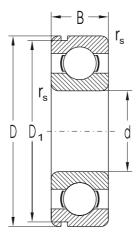
Размер	ры				узоподъемность ая статическая	Обозначение	е подшипника		
d	D	В	r						
u	D	U	r _s мин	C _r	C _{or}	Z, ZR	2Z, 2ZR	RS, RSR	2RS, 2RSR
им				кН					
3	10	4,0	0,15	0,645	0,229	623ZR	623-2ZR		
4	13	5,0	0,13	1,168	0,412	624ZR	624-2ZR		
7	16	5,0	0,2	1,875	0,677	634ZR	634-2ZR		
5	16	5,0	0,3	1,875	0,677	625ZR	625-2ZR		
3	19	6,0	0,3	2,838	1,078	635ZR	635-2ZR		
6	19	6,0	0,3	2,838	1,078	626ZR	626-2ZR		
7	19	6,0	0,3	2,838	1,078	607ZR	607-2ZR		
1				3,282	1,076				
0	22	7,0 7,0	0,3	3,282	1,356	627ZR 608ZR	627-2ZR 608-2ZR	608RSR	608-2RSR
9	24								
9		7,0	0,3	3,668	1,640	609ZR	609-2ZR	609RSR	609-2RSR
^	26	8,0	0,3	4,557	1,955	629ZR	629-2ZR 6000-2ZR	629RSR	629-2RSR
0	26	8,0	0,3	4,557	1,955	6000ZR		6000RSR	6000-2RSR
	30	9,0	0,6	6,047	2,510	6200ZR	6200-2ZR	6200RSR	6200-2RSR
	30	14,0	0,6	6,047	2,510	62200ZR	62200-2ZR	62200RSR	62200-2RSF
_	35	11,0	0,6	8,072	3,430	6300ZR	6300-2ZR	6300RS	6300-2RS
2	28	8,0	0,3	5,094	2,360	6001ZR	6001-2ZR	6001RSR	6001-2RSR
	32	10,0	0,6	6,905	3,100	6201ZR	6201-2ZR	6201RSR	6201-2RSR
	32	14,0	0,6	6,905	3,100	62201ZR	62201-2ZR	62201RS	62201-2RS
	37	12,0	1,0	9,759	4,235	6301ZR	6301-2ZR	6301RS	6301-2RS
5	32	9,0	0,3	5,594	2,860	6002ZR	6002-2ZR	6002RS	6002-2RS
	35	11,0	0,6	7,718	3,745	6202Z	6202-2Z	6202RS	6202-2RS
	35	14,0	0,6	7,718	3,745	62202ZR	62202-2ZR	62202RS	62202-2RS
	42	13,0	1,0	11,310	5,335	6302ZR	6302-2ZR	6302RS	6302-2RS
7	35	10,0	0,3	5,999	3,265	6003ZR	6003-2ZR	6003RS	6003-2RS
	40	12,0	0,6	9,534	4,734	6203Z	6203-2Z	6203RS	6203-2RS
	40	16,0	0,6	9,534	4,734	62203Z	62203-2Z	62203RS	62203-2RS
	47	14,0	1,0	13,565	6,563	6303ZR	6303-2ZR	6303RS	6303-2RS
0	42	12,0	0,6	9,371	4,972	6004ZR	6004-2ZR	6004RS	6004-2RS
	47	14,0	1,0	12,774	6,553	6204Z	6204-2Z	6204RS	6204-2RS
	47	18,0	1,0	12,774	6,553	62204Z	62204-2Z	62204RS	62204-2RS
	47	20,6	1,0	12,774	6,553	63204Z	63204-2Z	63204RS	63204-2RS
	52	15,0	1,1	15,866	7,811	6304Z	6304-2Z	6304RS	6304-2RS
	52	21,0	1,1	15,866	7,811	62304Z	62304-2Z	62304RS	62304-2RS
5	47	12,0	0,6	10,070	5,806	6005ZR	6005-ZR	6005RS	6005-2RS
	52	15,0	1,0	14,029	7,940	6205Z	6205-2Z	6205RS	6205-2RS
	52	18,0	1,0	14,029	7,940	62205Z	62205-2Z	62205RS	62205-2RS
	62	17,0	1,1	21,123	10,806	6305Z	6305-2Z	6305RS	6305-2RS
	62	24,0	1,1	21,123	10,806	62305Z	62305-2Z	62305RS	62305-2RS



•	ая частота		Присоед	динительные р	азмеры			Macca
	для смазки							
пластичес	кой	жидким						
смазкой		маслом	d	d_{a}	d _b	D_{a}	r _a	~
Z, 2Z	RS, 2RS	Z	МИН	макс	макс	макс		
мин⁻ ¹			ММ					КГ
40000		50000	3	4,2	4,8	8,5	0,1	0,0020
38000		45000	4	5,5	5,8	11,2	0,2	0,0040
35000		42000		6,2	6,5	13,4	0,3	0,0050
35000		42000	5	7,0	7,0	14,0	0,3	0,0060
35000		42000		7,2	7,5	15,8	0,3	0,0090
35000		42000	6	8,2	8,3	17,0	0,3	0,0100
35000		42000	7	9,0	9,0	17,0	0,3	0,0100
35000		42000		9,2	9,8	19,5	0,3	0,0120
35000	24000	42000	8	10,0	10,0	20,0	0,3	0,0150
35000	24000	42000	9	11,0	12,0	22,0	0,3	0,0180
35000	24000	42000		12,0	12,5	22,5	0,3	0,0200
28000	19000	33000	10	12,0	12,5	24,0	0,3	0,0200
25000	17000	30000		14,0	14,4	26,0	0,6	0,0320
25000	17000	30000		14,0	14,4	26,0	0,6	0,0400
22000	15000	27000		14,0	15,0	31,0	0,6	0,0530
25000	17000	30000	12	14,0	14,5	26,0	0,3	0,0220
22000	15000	27000		16,0	16,5	28,0	0,6	0,0370
22000	15000	27000		16,0	16,5	28,0	0,6	0,0450
20000	13000	24000		17,0	17,0	32,0	1,0	0,0600
21000	14000	25000	15	17,0	18,0	30,0	0,3	0,0310
20000	13000	24000	.,	19,0	19,5	31,0	0,6	0,0450
20000	13000	24000		19,0	19,5	31,0	0,6	0,0540
18000	12000	21000		20,0	20,5	36,0	1,0	0,0820
20000	13000	24000	17	19,0	20,0	33,0	0,3	0,0400
18000	12000	21000		21,0	21,4	36,0	0,6	0,0650
18000	12000	21000		21,0	21,4	36,0	0,6	0,0830
16000	10600	19000		23,0	23,0	41,0	1,0	0,1160
17000	11000	20000	20	24,0	24,5	38,0	0,3	0,0700
15000	10000	18000	20	25,0	25,5	42,0	0,6	0,1070
15000	10000	18000		25,0	25,5	42,0	0,6	0,1300
15000	10000	18000		25,0	25,5	42,0	0,6	0,1540
14000	9400	17000		26,0	26,6	45,0	1,0	0,1340
14000	9400	17000		26,0	26,6	45,0	1,0	0,2000
14000	9400	17000	25	28,0	29,0	43,0	0,6	0,0810
12600	8400	15000	25	30,0	30,5	47,0	1,0	0,1280
12600	8400	15000		30,0	30,5	47,0	1,0	0,1200
11000	7500	13000		31,0	33,0	55,0	1,0	0,1300
11000	7500	13000		31,0	33,0	55,0	1,0	0,2320
1000	7300	13000		31,0	JJ,U	55,0	1,0	0,3200

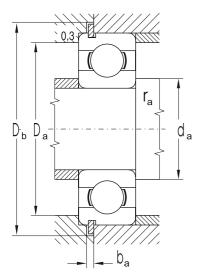

Однорядные шариковые подшипники с шайбой d = 30 ... 100 мм

Разм	иеры				зоподъемность	Обозначени	е подшипника		
al .	_	Б	_		я статическая				
d	D	В	r _s мин	C _r	C_{or}	Z, ZR	2Z, 2ZR	RS, RSR	2RS, 2RSR
1M				кН					
20	EE	10.0	1.0	10.040	0.050	6006Z	6006-2Z	6006RS	6006-2RS
30	55 62	13,0	1,0	13,243	8,253	6206Z		6206RS	
	62	16,0	1,0	19,443	11,186	62206Z	6206-2Z 62206-2Z	62206RS	6206-2RS 62206-2RS
	72	20,0 19,0	1,0 1,1	19,443 29,701	11,186 15,678	6306Z	6306-2Z	6306RS	6306-2RS
35	62	14,0	1,0	15,956	10,328	6007Z	6007-2Z	6007RS	6007-2RS
33	72	17,0	1,1	25,663	15,227	6207Z	6207-2Z	6207RS	6207-2RS
	80	21,0	1,5	33,367	19,230	6307Z	6307-2Z	6307RS	6307-2RS
40	68	15,0	1,0	16,824	11,493	6008Z	6008-2Z	6008RS	6008-2RS
40	80	18,0	1,1	32,633	19,887	6208Z	6208-2Z	6208RS	6208-2RS
	90	23,0	1,5	40,760	24,017	6308Z	6308-2Z	6308RS	6308-2RS
45	75	16,0	1,0	21,100	15,300	6009Z	6009-2Z	6009RS	6009-2RS
40	85	19,0	1,1	32,687	20,323	6209Z	6209-2Z	6209RS	6209-2RS
	100	25,0	1,5	52,804	31,715	6309Z	6309-2Z	6309RS	6309-2RS
50	80	16,0	1,0	21,720	16,650	6010Z	6010-2Z	6010RS	6010-2RS
50	90	20,0	1,1	35,066	23,266	6210Z	6210-2Z	6210RS	6210-2RS
	110	27,0	2,0	61,754	37,745	6310Z	6310-2Z	6310RS	6310-2RS
55	90	18,0	1,1	28,216	21,318	6011Z	6011-2Z	6011RS	6011-2RS
55	100	21,0	1,5	43,350	29,397	6211Z	6211-2Z	6211RS	6211-2RS
	120	29,0	2,0	71,000	44,700	6311Z	6311-2Z	6311RS	6311-2RS
60	95	18,0	1,1	29,343	23,256	6012Z	6012-2Z	6012RS	6012-2RS
00	110	22,0	1,5	52,486	35,786	6212Z	6212-2Z	6212RS	6212-2RS
	130	31,0	2,1	81,500	52,100	6312Z	6312-2Z	6312RS	6312-2RS
65	100	18,0	1,1	30,500	25,100	6013Z	6013-2Z	6013RS	6013-2RS
05	120	23,0	1,5	57,210	40,011	6213Z	6213-2Z	6213RS	6213-2RS
	140	33,0	2,1	92,600	59,600	6313Z	6313-2Z	6313RS	6313-2RS
70	110	20,0	1,1	37,960	30,959	6014Z	6014-2Z	6014RS	6014-2RS
70	125	24,0	1,5	62,000	43,800	6214Z	6214-2Z	6214RS	6214-2RS
	150	35,0	2,1	104,000	68,100	6314Z	6314-2Z	6314RS	6314-2RS
75	115	20,0	1,1	39,747	33,170	6015Z	6015-2Z	6015RS	6015-2RS
13	130	25,0	1,5	66,179	49,311	6215Z	6215-2Z	6215RS	6215-2RS
	160	37,0	2,1	114,000	76,400	6315Z	6315-2Z	6315RS	6315-2RS
80	125	22,0	1,1	47,500	39,800	6016Z	6016-2Z	6016RS	6016-2RS
00	140	26,0	2,0	72,200	53,100	6216Z	6216-2Z	6216RS	6216-2RS
	170	39,0	2,0	122,850	86,226	6316Z	6316-2Z	021003	0210-2N3
85	130	22,0	1,1	49,794	42,609	6017Z	6017-2Z		
05	150	28,0	2,0	83,299	63,675	6217Z	6217-2Z	6217RS	6217-2RS
	180	41,0	3,0	132,507	96,069	6317Z	6317-2Z	021110	0211-2113
90	160	30,0	2,0	96,200	70,800	6218Z	6218-2Z		
30	190	43,0	3,0	143,000	104,000	6318Z	6318-2Z		
100	150	24,0	1,5	60,000	54,000	6020Z	6020-2Z		
100	100	۷٦,0	1,0	00,000	J7,000	30202	0020-22		

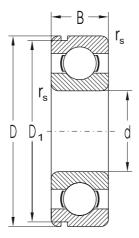


пластичес	для смазки	жидким		јинительные р				Macca
смазкой Z, 2Z	RS, 2RS	маслом Z	d мин	d _а макс	d _ь макс	D _а макс	r _a	~
ин ⁻¹			ММ					КГ
12000	7900	14000	30	34,0	35,0	50,0	1,0	0,1190
11000	7500	13000		35,0	36,7	57,0	1,0	0,2010
11000	7500	13000		35,0	36,7	57,0	1,0	0,2400
10000	6700	12000		36,0	38,9	65,0	1,0	0,3500
10600	7100	12600	35	39,5	39,5	57,0	1,0	0,1590
9400	6300	11000	00	42,0	42,0	65,0	1,0	0,2900
8400	5600	10000		42,0	44,0	71,0	1,5	0,4600
9400	6300	11000	40	44,0	46,0	63,0	1,0	0,1950
8400	5600	10000	40	47,0	48,0	73,0	1,0	0,3670
7900	5300	9400		47,0	50,6	81,0	1,5	0,6350
8400	5600	10000	45	49,0	51,5	70,0	1,0	0,2490
7900	5300	9400	70	52,0	52,5	78,0	1,0	0,4100
7100	4700	8400		52,0	56,0	91,0	1,5	0,8330
7900	5300	9400	50	54,0	56,5	75,0	1,0	0,2640
7100	4700	8400	30	57,0	58,0	83,0	1,0	0,4640
6300	4200	7500		60,0	61,8	100,0	2,0	1,0800
7100	4700	8400	55	60,0	62,5	84,0	1,0	0,3900
6700	4500	7900	55	62,0	65,0	91,0	1,5	0,6110
5600	3800	6700		65,0	67,0		2,0	1,3800
6700	4500	7900	60			110,0 88,0		0,4200
			60	65,0	68,0		1,0	
6000	4000	7100		67,0	70,2	101,0	1,5	0,7870
5300	3500	6300	٥٦	72,0	75,0	118,0	2,0	1,7200
6300	4200	7500	65	70,0	73,0	93,0	1,0	0,4400
5300	3500	6300		72,0	77,0	111,0	1,5	0,9950
5000	3300	6000	70	76,0	78,0	128,0	2,0	2,1000
5600	3800	6700	70	75,0	78,0	103,0	1,0	0,6180
5300	3500	6300		77,0	82,0	116,0	1,5	1,0900
4700	3200	5600		81,0	85,0	138,0	2,0	2,5300
5300	3500	6300	75	80,0	83,0	108,0	1,0	0,6400
5000	3300	6000		82,0	85,0	121,0	1,5	1,1900
4200	2800	5000		86,0	93,0	148,0	2,0	3,0300
5000	3300	6000	80	85,0	90,0	118,0	1,0	0,8600
4700	3200	5600		90,0	92,0	130,0	2,0	1,4100
4000		4700		91,0	99,0	158,0	2,0	3,6200
4700		5600	85	90,0	95,0	123,0	1,0	0,8900
4200	2800	5000		95,0	99,0	140,0	2,0	1,7900
3800		4500		98,0	103,0	166,0	2,5	4,2600
4000		4700	90	100,0	105,0	150,0	2,0	2,1600
3400		4200		103,0	108,0	176,0	2,5	5,1500
4200		5000	100	106,0	110,0	142,0	1,5	1,2700

Однорядные шариковые подшипники с канавкой для стопорного кольца на наружном кольце d = 12 ... 50 мм

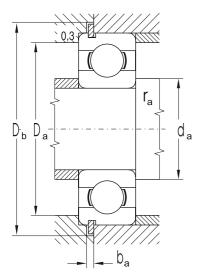


								динамичес	рузоподъемность кая статическая	Предельная вращения д	тя смазки
b	D	В	r _s мин	D _₁ макс	а макс	b мин	r _o макс	C _r	C_{or}	пластическо смазкой	й жидким маслом
ИМ								кН		МИН ⁻¹	
12	32	10,0	0,66	30,15	2,06	1,35	0,4	6,905	3,100	22000	27000
	32	14,0	0,66	30,15	2,06	1,35	0,4	6,905	3,100	22000	27000
15	35	11,0	0,60	33,17	2,06	1,35	0,4	7,718	3,745	20000	24000
	35	14,0	0,60	33,17	2,06	1,35	0,4	7,718	3,745	20000	24000
17	40	12,0	0,60	38,10	2,06	1,35	0,4	9,534	4,734	18000	21000
	40	16,0	0,60	38,10	2,06	1,35	0,4	9,534	4,734	18000	21000
	47	14,0	1,00	44,60	2,46	1,35	0,4	13,565	6,563	16000	19000
20	42	12,0	0,60	39,75	2,06	1,35	0,4	9,371	4,972	17000	20000
	47	14,0	1,00	44,60	2,46	1,35	0,4	12,774	6,553	15000	18000
	52	15,0	1,10	49,73	2,46	1,35	0,4	15,866	7,811	14000	17000
	52	21,0	1,10	49,73	2,46	1,35	0,4	15,866	7,811	14000	17000
25	47	12,0	0,60	44,60	2,06	1,35	0,4	10,070	5,806	14000	17000
	52	15,0	1,00	49,73	2,46	1,35	0,4	14,029	7,940	12600	15000
	52	18,0	1,00	49,73	2,46	1,35	0,4	14,029	7,940	12600	15000
	62	17,0	1,10	59,61	3,28	1,90	0,6	21,123	10,806	11000	13000
	62	24,0	1,10	59,61	3,28	1,90	0,6	21,123	10,806	11000	13000
	80	21,0	1,50	76,81	3,28	1,90	0,6	36,000	19,200	9400	11000
30	55	13,0	1,00	52,60	2,08	1,90	0,4	13,243	8,253	12000	14000
	62	16,0	2,00	59,61	3,28	1,90	0,6	19,443	11,186	11000	13000
	62	20,0	2,00	59,61	3,28	1,90	0,6	19,443	11,186	11000	13000
	72	19,0	1,10	68,81	3,28	1,90	0,6	29,701	15,678	10000	12000
	90	23,0	1,50	86,79	3,28	2,70	0,6	43,000	23,700	8400	10000
35	62	14,0	1,00	59,61	2,06	1,90	0,6	15,956	10,328	10600	12600
	72	17,0	1,10	68,81	3,28	1,90	0,6	25,663	15,277	9400	11000
	80	21,0	1,50	78,81	3,28	1,90	0,6	33,367	19,230	8400	10000
	100	25,0	1,50	96,80	3,28	2,70	0,6	55,200	31,000	7500	8900
40	68	15,0	1,00	64,82	2,49	1,90	0,6	16,824	11,493	9400	11000
	80	18,0	1,10	76,81	3,28	1,90	0,6	32,633	19,887	8400	10000
	90	23,0	1,50	86,79	3,28	2,70	0,6	40,760	24,017	7900	9400
	110	27,0	2,00	106,81	3,28	2,70	0,6	63,100	36,200	6700	7900
45	75	16,0	1,00	71,83	2,49	1,90	0,6	21,100	15,300	8400	10000
	85	19,0	1,10	81,81	3,28	1,90	0,6	32,687	20,325	7900	9400
	100	25,0	1,50	96,80	3,28	2,70	0,6	52,804	31,715	7100	8400
	120	29,0	2,00	115,21	4,06	3,10	0,6	76,500	44,700	6000	7100
50	80	16,0	1,00	76,81	2,49	1,90	0,6	21,720	16,650	7900	9400
	90	20,0	1,10	86,79	3,28	2,70	0,6	35,066	23,226	7100	8400
	110	27,0	2,00	106,81	3,28	2,70	0,6	61,900	37,600	6300	7500

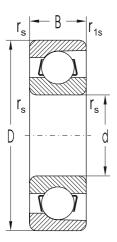


Обозначение	Присоед	цинительные	размеры				Macca	Соответствующе
одшипника	d мин	d _а мин	D _а макс	D _b мин	b _а мин	r _a Makc	~	стопорное кольц
	ММ						КГ	
201N	12	16	28	39	1,4	0,6	0.0370	R32
2201N		16	28	39	1,4	0,6	0,0450	R32
202N	15	19	31	41	1,4	0,6	0,0300	R35
2202N		19	31	41	1,4	0,6	0,0540	R35
203N	17	21	36	46	1,5	0,6	0,0730	R40
2203N		21	36	46	1,5	0,6	0,0830	R40
303N		23	41	54	1,5	1,0	0,1150	R47
004N	20	24	38	47,5	1,5	0,6	0,0700	R42
204N		25	42	54	1,5	1,0	0,1080	R47
304N		26	45	59	1,5	1,0	0,1450	R52
2304N		26	45	59	1,5	1,0	0,2000	R52
005N	25	28	43	54	1,5	0,6	0,0820	R47
205N	25	30	47	59	1,5	1,0	0,1290	R52
2205N		30	47	59	1,5	1,0	0,1500	R52
305N		31	55	69	2,2	1,0	0,1300	R62
2305N		31	55	69	2,2	1,0	0,3200	R62
405N		34	70	88	2,2	1,5	0,5300	R80
006N	30	34	50	62	1,5	1,0	0,3300	R55
	30							
206N		35	57 57	69	2,2	1,0	0,2000	R62
2206N		35	57	69	2,2	1,0	0,2400	R62
306N		36	65	80	2,2	1,0	0,3310	R72
406N	0.5	39	80	98	3,0	1,5	0,7250	R90
007N	35	39,5	57	69	2,2	1,0	0,1540	R62
207N		42	65	80	2,2	1,0	0,2840	R72
307N		42	71	88	2,2	1,5	0,4470	R80
407N	10	44	90	108	3,0	1,5	0,9540	R100
008N	40	44	63	76	2,2	1,0	0,1910	R68
208N		47	73	88	2,2	1,0	0,3490	R80
308N		47	81	98	3,0	1,5	0,6250	R90
408N	45	50	97	118	3,0	3,0	1,2300	R110
009N	45	49	70	83	2,2	1,0	0,2410	R75
209N		52	78	93	2,2	1,0	0,4040	R85
309N		52	91	108	3,0	1,5	0,8280	R100
409N		55	107	131	3,5	2,0	1,5400	R120
010N	50	54	75	88	2,2	1,0	0,2600	R80
210N		57	83	98	3,0	1,0	0,4600	R90
310N		60	100	118	3,0	2,0	1,0600	R110

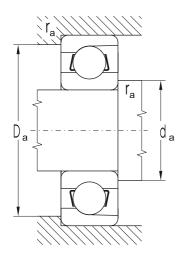
Однорядные шариковые подшипники с канавкой для стопорного кольца на наружном кольце d = 55 ... 120 мм



Marc Name	Pası	иеры							Основная гр	узоподъемность ая статическая	Предельная ч вращения для	
155 90 18,0 1,10 86,79 2,87 2,70 0,6 28,200 21,318 7100 8400 100 21,0 1,50 96,80 3,28 2,70 0,6 43,350 29,397 6700 7900 120 29,0 2,00 115,21 4,06 3,10 0,6 71,000 44,700 5600 6700 140 33,0 2,10 135,23 4,90 3,10 0,6 100,000 61,900 5300 6300 110 22,0 1,50 106,81 3,82 2,70 0,6 29,343 23,256 6700 7900 130 31,0 2,10 125,22 4,06 3,10 0,6 81,500 52,100 5300 6300 150 35,0 2,10 145,24 4,90 3,10 0,6 110,000 69,400 4700 5600 120 23,0 1,50 115,21 4,06 3,10 0,6 57,210 40,011 5300 6300 140 33,0 2,10 135,23 4,90 3,10 0,6 57,210 40,011 5300 6300 140 33,0 2,10 135,23 4,90 3,10 0,6 57,210 40,011 5300 6300 160 37,0 2,10 155,22 4,90 3,10 0,6 117,950 78,329 4500 5300 150 35,0 2,10 145,24 4,90 3,10 0,6 17,950 78,329 4500 5300 160 37,0 2,10 155,22 4,90 3,10 0,6 17,950 78,329 4500 5300 150 35,0 2,10 145,24 4,90 3,10 0,6 17,950 78,329 4500 5300 150 35,0 2,10 155,22 4,90 3,10 0,6 62,000 43,800 5300 6300 150 35,0 2,10 145,24 4,90 3,10 0,6 62,000 43,800 5300 6300 150 35,0 2,10 145,24 4,90 3,10 0,6 62,000 43,800 5300 6300 150 35,0 2,10 145,24 4,90 3,10 0,6 66,170 49,311 5000 6000 180 42,0 3,00 173,66 5,69 3,50 0,6 114,000 68,100 4700 5600 180 42,0 3,00 133,64 5,69 3,50 0,6 140,000 68,100 4700 5600 170 39,0 2,10 163,65 5,69 3,50 0,6 152,529 112,922 3800 4500 150 30,0 2,00 155,22 4,90 3,10 0,6 63,587 124,944 3500 4200 150 30,0 2,00 155,22 4,90 3,10 0,6 63,587 124,944 3500 4200 150 30,0 2,00 155,22 4,90 3,10 0,6 63,587 42,699 4700 5600 150 28,0 2,00 145,24 4,90 3,10	t	D	В								пластической	
100	ИМ								кН		МИН ⁻¹	
100	55	90	18.0	1,10	86,79	2,87	2,70	0,6	28,200	21,318	7100	8400
120		100									6700	7900
140 33,0 2,10 135,23 4,90 3,10 0,6 100,000 61,900 5300 6300 6300 6300 850 81,0 1,10 91,82 2,87 2,70 0,6 29,343 23,256 6700 7900 7100		120										
60 95 18,0 1,10 91,82 2,87 2,70 0,6 29,343 23,256 6700 7900 110 22,0 1,50 106,81 3,82 2,70 0,6 52,486 35,786 6000 7100 130 31,0 2,10 145,24 4,90 3,10 0,6 110,000 69,400 4700 5600 65 100 18,0 1,10 96,80 2,87 2,70 0,6 30,500 25,100 6300 7500 120 23,0 1,50 115,21 4,06 3,10 0,6 57,210 40,011 5300 6300 140 33,0 2,10 155,22 4,90 3,10 0,6 92,600 59,600 5000 6000 150 37,0 2,10 155,22 4,90 3,10 0,6 92,600 30,959 5600 6700 150 35,0 2,10 145,224 4,90 3,10		140	33,0	2,10					100,000	61,900	5300	6300
110	60	95	18,0						29,343	23,256	6700	7900
130		110	22,0	1,50			2,70				6000	7100
150 35,0 2,10 145,24 4,90 3,10 0,6 110,000 69,400 4700 5600 120 23,0 1,50 115,21 4,06 3,10 0,6 57,210 40,011 5300 6300 140 33,0 2,10 135,23 4,90 3,10 0,6 92,600 59,600 5000 5300 160 37,0 2,10 155,22 4,90 3,10 0,6 117,950 78,329 4500 5300 170 180 42,0 3,00 173,66 5,69 3,50 0,6 114,000 104,000 4700 4700 180 42,0 3,00 173,66 5,69 3,50 0,6 114,000 76,400 4200 5000 180 37,0 2,10 155,22 4,90 3,10 0,6 66,170 49,311 5000 6300 150 35,0 2,10 145,24 4,90 3,10 0,6 66,170 49,311 5000 6300 150 35,0 2,10 111,81 2,87 2,70 0,6 39,747 33,170 5300 6300 150 35,0 2,10 111,81 2,87 2,70 0,6 39,747 33,170 5300 6300 150 37,0 2,10 155,22 4,06 3,10 0,6 66,170 49,311 5000 6000 180 42,0 3,00 173,66 5,69 3,50 0,6 114,000 76,400 4200 5000 180 37,0 2,10 155,22 4,06 3,10 0,6 66,170 49,311 5000 6000 160 37,0 2,10 155,22 4,90 3,10 0,6 66,170 49,311 5000 6000 190 45,0 3,00 183,64 5,69 3,50 0,6 152,529 112,922 3800 4500 30 125 22,0 1,10 120,22 2,87 3,10 0,6 47,500 39,800 5000 6000 140 26,0 2,00 135,23 4,90 3,10 0,6 47,500 39,800 5000 6000 140 26,0 2,00 135,23 4,90 3,10 0,6 47,500 39,800 5000 6000 150 28,0 2,00 145,24 4,90 3,10 0,6 49,794 42,609 4700 5600 150 28,0 2,00 145,24 4,90 3,10 0,6 68,400 49,200 4700 5600 180 41,0 3,00 173,66 5,69 3,50 0,6 132,507 96,69 3800 4500 30 140 24,0 1,50 135,23 3,71 3,10 0,6 58,400 49,200 4500 5300 160 30,0 2,00 155,22 4,90 3,10 0,6 58,400 49,200 4500 5300 160 30,0 2,00 155,22 4,90 3,10 0,6 58,400 49,200 4500 5300 150 24,0 1,50 145,24		130								52,100	5300	6300
35 100 18,0 1,10 96,80 2,87 2,70 0,6 30,500 25,100 6300 7500 120 23,0 1,50 115,21 4,06 3,10 0,6 57,210 40,011 5300 6300 140 33,0 2,10 135,23 4,90 3,10 0,6 92,600 59,600 5000 6000 160 37,0 2,10 155,22 4,90 3,10 0,6 117,950 78,329 4500 5300 70 110 20,0 1,10 106,81 2,87 2,70 0,6 37,960 30,959 5600 6700 125 24,0 1,50 120,22 4,06 3,10 0,6 62,000 43,800 5300 6300 150 35,0 2,10 145,24 4,90 3,10 0,6 104,000 68,100 4700 5600 15 20,0 1,10 111,81 2,87 2,70												
120	35	100										
140 33,0 2,10 135,23 4,90 3,10 0,6 92,600 59,600 5000 6000 160 37,0 2,10 155,22 4,90 3,10 0,6 117,950 78,329 4500 5300 70 110 20,0 1,10 106,81 2,87 2,70 0,6 37,960 30,959 5600 6700 125 24,0 1,50 120,22 4,06 3,10 0,6 62,000 43,800 5300 6300 150 35,0 2,10 145,24 4,90 3,10 0,6 104,000 68,100 4700 5600 180 42,0 3,00 173,66 5,69 3,50 0,6 114,000 104,000 4000 4700 75 115 20,0 1,10 111,81 2,87 2,70 0,6 39,747 33,170 5300 6300 150 25,0 1,50 125,22 4,90 3,10		120										
160 37,0 2,10 155,22 4,90 3,10 0,6 117,950 78,329 4500 5300 70 110 20,0 1,10 106,81 2,87 2,70 0,6 37,960 30,959 5600 6700 125 24,0 1,50 120,22 4,06 3,10 0,6 62,000 43,800 5300 6300 150 35,0 2,10 145,24 4,90 3,10 0,6 104,000 68,100 4700 5600 180 42,0 3,00 173,66 5,69 3,50 0,6 114,000 104,000 4000 4700 75 115 20,0 1,10 111,81 2,87 2,70 0,6 39,747 33,170 5300 6300 150 37,0 2,10 155,22 4,96 3,10 0,6 66,170 49,311 5000 6000 160 37,0 2,10 155,222 4,90 3,10		140	33,0							59,600	5000	6000
70 110 20,0 1,10 106,81 2,87 2,70 0,6 37,960 30,959 5600 6700 125 24,0 1,50 120,22 4,06 3,10 0,6 62,000 43,800 5300 6300 150 35,0 2,10 145,24 4,90 3,10 0,6 104,000 68,100 4700 5600 180 42,0 3,00 173,66 5,69 3,50 0,6 114,000 104,000 4000 4700 75 115 20,0 1,10 111,81 2,87 2,70 0,6 39,747 33,170 5300 6300 130 25,0 1,50 125,22 4,06 3,10 0,6 61,70 49,311 5000 6000 160 37,0 2,10 155,22 4,90 3,10 0,6 114,000 76,400 4200 5000 30 125 22,0 1,10 120,22 2,87												
125	70	110			106,81				37,960			
150 35,0 2,10 145,24 4,90 3,10 0,6 104,000 68,100 4700 5600 180 42,0 3,00 173,66 5,69 3,50 0,6 114,000 104,000 4000 4700 75 115 20,0 1,10 111,81 2,87 2,70 0,6 39,747 33,170 5300 6300 130 25,0 1,50 125,22 4,06 3,10 0,6 66,170 49,311 5000 6000 160 37,0 2,10 155,22 4,90 3,10 0,6 144,000 76,400 4200 5000 190 45,0 3,00 183,64 5,69 3,50 0,6 152,529 112,922 3800 4500 30 125 22,0 1,10 120,22 2,87 3,10 0,6 47,500 39,800 5000 6000 140 26,0 2,00 135,23 4,90 3,10												
180 42,0 3,00 173,66 5,69 3,50 0,6 114,000 104,000 4000 4700 75 115 20,0 1,10 111,81 2,87 2,70 0,6 39,747 33,170 5300 6300 130 25,0 1,50 125,22 4,06 3,10 0,6 66,170 49,311 5000 6000 160 37,0 2,10 155,22 4,90 3,10 0,6 114,000 76,400 4200 5000 190 45,0 3,00 183,64 5,69 3,50 0,6 152,529 112,922 3800 4500 30 125 22,0 1,10 120,22 2,87 3,10 0,6 47,500 39,800 5000 6000 140 26,0 2,00 135,23 4,90 3,10 0,6 72,200 53,100 4700 5600 35 130 22,0 1,10 125,22 2,87												
75 115 20,0 1,10 111,81 2,87 2,70 0,6 39,747 33,170 5300 6300 130 25,0 1,50 125,22 4,06 3,10 0,6 66,170 49,311 5000 6000 160 37,0 2,10 155,22 4,90 3,10 0,6 114,000 76,400 4200 5000 190 45,0 3,00 183,64 5,69 3,50 0,6 152,529 112,922 3800 4500 30 125 22,0 1,10 120,22 2,87 3,10 0,6 47,500 39,800 5000 6000 140 26,0 2,00 135,23 4,90 3,10 0,6 72,200 53,100 4700 5600 170 39,0 2,10 163,65 5,69 3,50 0,6 122,850 86,226 4000 4700 35 130 22,0 1,10 125,22 2,87												
130 25,0 1,50 125,22 4,06 3,10 0,6 66,170 49,311 5000 6000 160 37,0 2,10 155,22 4,90 3,10 0,6 114,000 76,400 4200 5000 190 45,0 3,00 183,64 5,69 3,50 0,6 152,529 112,922 3800 4500 30 125 22,0 1,10 120,22 2,87 3,10 0,6 47,500 39,800 5000 6000 140 26,0 2,00 135,23 4,90 3,10 0,6 72,200 53,100 4700 5600 170 39,0 2,10 163,65 5,69 3,50 0,6 122,850 86,226 4000 4700 35 130 22,0 1,10 125,22 2,87 3,10 0,6 49,794 42,609 4700 5600 150 28,0 2,00 145,24 4,90 3,10	75	115										
160 37,0 2,10 155,22 4,90 3,10 0,6 114,000 76,400 4200 5000 190 45,0 3,00 183,64 5,69 3,50 0,6 152,529 112,922 3800 4500 30 125 22,0 1,10 120,22 2,87 3,10 0,6 47,500 39,800 5000 6000 140 26,0 2,00 135,23 4,90 3,10 0,6 72,200 53,100 4700 5600 170 39,0 2,10 163,65 5,69 3,50 0,6 122,850 86,226 4000 4700 200 48,0 3,00 193,65 5,69 3,50 0,6 163,587 124,984 3500 4200 35 130 22,0 1,10 125,22 2,87 3,10 0,6 49,794 42,609 4700 5600 150 28,0 2,00 145,24 4,90 3,10												
190 45,0 3,00 183,64 5,69 3,50 0,6 152,529 112,922 3800 4500 30 125 22,0 1,10 120,22 2,87 3,10 0,6 47,500 39,800 5000 6000 140 26,0 2,00 135,23 4,90 3,10 0,6 72,200 53,100 4700 5600 170 39,0 2,10 163,65 5,69 3,50 0,6 122,850 86,226 4000 4700 200 48,0 3,00 193,65 5,69 3,50 0,6 163,587 124,984 3500 4200 35 130 22,0 1,10 125,22 2,87 3,10 0,6 49,794 42,609 4700 5600 150 28,0 2,00 145,24 4,90 3,10 0,6 83,299 63,675 4200 5000 180 41,0 3,00 173,66 5,69 3,50												
30 125 22,0 1,10 120,22 2,87 3,10 0,6 47,500 39,800 5000 6000 140 26,0 2,00 135,23 4,90 3,10 0,6 72,200 53,100 4700 5600 170 39,0 2,10 163,65 5,69 3,50 0,6 122,850 86,226 4000 4700 200 48,0 3,00 193,65 5,69 3,50 0,6 163,587 124,984 3500 4200 35 130 22,0 1,10 125,22 2,87 3,10 0,6 49,794 42,609 4700 5600 150 28,0 2,00 145,24 4,90 3,10 0,6 83,299 63,675 4200 5000 180 41,0 3,00 173,66 5,69 3,50 0,6 132,507 96,069 3800 4500 90 140 24,0 1,50 135,23 3,71												
140 26,0 2,00 135,23 4,90 3,10 0,6 72,200 53,100 4700 5600 170 39,0 2,10 163,65 5,69 3,50 0,6 122,850 86,226 4000 4700 200 48,0 3,00 193,65 5,69 3,50 0,6 163,587 124,984 3500 4200 35 130 22,0 1,10 125,22 2,87 3,10 0,6 49,794 42,609 4700 5600 150 28,0 2,00 145,24 4,90 3,10 0,6 83,299 63,675 4200 5000 180 41,0 3,00 173,66 5,69 3,50 0,6 132,507 96,069 3800 4500 90 140 24,0 1,50 135,23 3,71 3,10 0,6 58,400 49,200 4500 5300 160 30,0 2,00 155,22 4,90 3,10 0,6 58,400 49,200 4500 5300 25 200	30											
170 39,0 2,10 163,65 5,69 3,50 0,6 122,850 86,226 4000 4700 200 48,0 3,00 193,65 5,69 3,50 0,6 163,587 124,984 3500 4200 85 130 22,0 1,10 125,22 2,87 3,10 0,6 49,794 42,609 4700 5600 150 28,0 2,00 145,24 4,90 3,10 0,6 83,299 63,675 4200 5000 180 41,0 3,00 173,66 5,69 3,50 0,6 132,507 96,069 3800 4500 90 140 24,0 1,50 135,23 3,71 3,10 0,6 58,400 49,200 4500 5300 160 30,0 2,00 155,22 4,90 3,10 0,6 58,400 49,200 4500 5300 25 200 45,0 3,00 193,65 5,69 3,50 0,6 152,444 117,366 3300 4000 25												
200 48,0 3,00 193,65 5,69 3,50 0,6 163,587 124,984 3500 4200 35 130 22,0 1,10 125,22 2,87 3,10 0,6 49,794 42,609 4700 5600 150 28,0 2,00 145,24 4,90 3,10 0,6 83,299 63,675 4200 5000 180 41,0 3,00 173,66 5,69 3,50 0,6 132,507 96,069 3800 4500 90 140 24,0 1,50 135,23 3,71 3,10 0,6 58,400 49,200 4500 5300 160 30,0 2,00 155,22 4,90 3,10 0,6 96,200 70,800 4000 4700 95 200 45,0 3,00 193,65 5,69 3,50 0,6 152,444 117,366 3300 4000 00 150 24,0 1,50 145,24		170										
35 130 22,0 1,10 125,22 2,87 3,10 0,6 49,794 42,609 4700 5600 150 28,0 2,00 145,24 4,90 3,10 0,6 83,299 63,675 4200 5000 180 41,0 3,00 173,66 5,69 3,50 0,6 132,507 96,069 3800 4500 90 140 24,0 1,50 135,23 3,71 3,10 0,6 58,400 49,200 4500 5300 160 30,0 2,00 155,22 4,90 3,10 0,6 96,200 70,800 4000 4700 95 200 45,0 3,00 193,65 5,69 3,50 0,6 152,444 117,366 3300 4000 90 150 24,0 1,50 145,24 3,71 3,10 0,6 60,096 54,244 4200 5000 95 190 36,0 2,10												
150 28,0 2,00 145,24 4,90 3,10 0,6 83,299 63,675 4200 5000 180 41,0 3,00 173,66 5,69 3,50 0,6 132,507 96,069 3800 4500 140 24,0 1,50 135,23 3,71 3,10 0,6 58,400 49,200 4500 5300 160 30,0 2,00 155,22 4,90 3,10 0,6 96,200 70,800 4000 4700 150 24,0 3,00 193,65 5,69 3,50 0,6 152,444 117,366 3300 4000 150 24,0 1,50 145,24 3,71 3,10 0,6 60,096 54,244 4200 5000 150 24,0 1,50 145,24 3,71 3,10 0,6 60,096 54,244 4200 5000 150 190 36,0 2,10 183,64 5,96 3,50 0,6 132,297 104,833 3300 4000	35							0.6	49.794			
180 41,0 3,00 173,66 5,69 3,50 0,6 132,507 96,069 3800 4500 90 140 24,0 1,50 135,23 3,71 3,10 0,6 58,400 49,200 4500 5300 160 30,0 2,00 155,22 4,90 3,10 0,6 96,200 70,800 4000 4700 05 200 45,0 3,00 193,65 5,69 3,50 0,6 152,444 117,366 3300 4000 00 150 24,0 1,50 145,24 3,71 3,10 0,6 60,096 54,244 4200 5000 05 190 36,0 2,10 183,64 5,96 3,50 0,6 132,297 104,833 3300 4000												
00 140 24,0 1,50 135,23 3,71 3,10 0,6 58,400 49,200 4500 5300 160 30,0 2,00 155,22 4,90 3,10 0,6 96,200 70,800 4000 4700 05 200 45,0 3,00 193,65 5,69 3,50 0,6 152,444 117,366 3300 4000 00 150 24,0 1,50 145,24 3,71 3,10 0,6 60,096 54,244 4200 5000 05 190 36,0 2,10 183,64 5,96 3,50 0,6 132,297 104,833 3300 4000												
160 30,0 2,00 155,22 4,90 3,10 0,6 96,200 70,800 4000 4700 95 200 45,0 3,00 193,65 5,69 3,50 0,6 152,444 117,366 3300 4000 00 150 24,0 1,50 145,24 3,71 3,10 0,6 60,096 54,244 4200 5000 05 190 36,0 2,10 183,64 5,96 3,50 0,6 132,297 104,833 3300 4000	90											
25 200 45,0 3,00 193,65 5,69 3,50 0,6 152,444 117,366 3300 4000 00 150 24,0 1,50 145,24 3,71 3,10 0,6 60,096 54,244 4200 5000 05 190 36,0 2,10 183,64 5,96 3,50 0,6 132,297 104,833 3300 4000												
00 150 24,0 1,50 145,24 3,71 3,10 0,6 60,096 54,244 4200 5000 05 190 36,0 2,10 183,64 5,96 3,50 0,6 132,297 104,833 3300 4000	95											
05 190 36,0 2,10 183,64 5,96 3,50 0,6 132,297 104,833 3300 4000												
	20	100	20,0	2,00	173,00	3,71	3,30	0,6	85,000	79,400	3300	4000



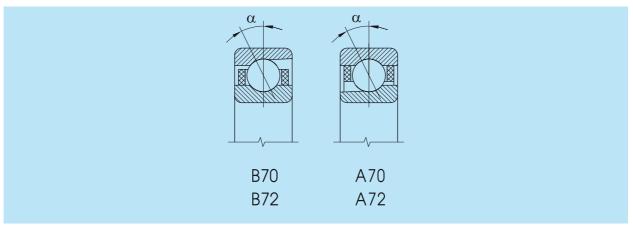
м d _a мин	0 84 2 91 5 110 8 126 5 88	98 108 131 151	b _а мин 3,0 3,0 3,5	г _а макс 1,0 1,5 2,0	кг 0,3830 0,5970	СТОПОРНОЕ КОЛЬЦ R90 R100
5 66 66 66 60 67	2 91 5 110 8 126 5 88	108 131 151	3,0 3,5	1,5	0,3830 0,5970	
6: 6: 6: 0 6: 6: 7:	2 91 5 110 8 126 5 88	108 131 151	3,0 3,5	1,5	0,5970	
6: 6: 6: 0 6: 6: 7:	5 110 8 126 5 88	131 151	3,0 3,5	1,5	0,5970	R100
69 60 60 60 77	5 110 8 126 5 88	131 151	3,5			
66 6 72	8 126 5 88	151		2,0	1,3800	R120
6 7:			3,5	2,0	2,2900	R140
6 7:		103	3,0	1,0	0,4110	R95
7:	, 101	110	3,0	1,5	0,7710	R110
		141	3,5	2,0	1,7200	R130
		162	3,5	2,0	2,7600	R150
5 70		108	3,0	1,0	0,4370	R100
7:		131	3,5	1,5	0,9970	R120
7		148	3,5	2,0	2,1000	R140
						R160
						R110
						R125
				2.0		R150
			4.5	2.5		R180
			3.0			R115
						R130
				2.0		R160
						R190
			3.5	1.0		R125
						R140
						R170
						R200
						R130
						R150
Q:	3 166			2.5		R180
			3.5	1.5		R140
						R160
		215	4.5	2,0		R200
						R150
						R190
			4.5			R180
<u>5</u>	78 78 78 88 88 88 86 86 90 90 99 99 90 90 100 100 0 106	78 146 75 103 77 116 81 138 85 164 80 108 82 121 86 148 90 174 85 118 90 130 91 158 95 184 91,5 123, 95 140 98 166 96 132 100 150 109 186 0 106 142 5 117 178	78 146 172 75 103 118 77 116 136 81 138 162 85 164 195 80 108 123 82 121 141 86 148 172 90 174 205 85 118 136 90 130 151 91 158 185 95 184 215 91,5 123,5 141 95 140 162 98 166 195 96 132 151 100 150 172 109 186 215 0 106 142 162 5 117 178 205	78 146 172 3,5 75 103 118 3,0 77 116 136 3,5 81 138 162 3,5 85 164 195 4,5 80 108 123 3,0 82 121 141 3,5 86 148 172 3,5 90 174 205 4,5 85 118 136 3,5 90 130 151 3,5 91 158 185 3,5 95 184 215 4,5 91,5 123,5 141 3,5 95 140 162 3,5 98 166 195 4,5 96 132 151 3,5 100 150 172 3,5 109 186 215 4,5 109 186 215 4,5 <td>78 146 172 3,5 2,0 75 103 118 3,0 1,0 77 116 136 3,5 1,5 81 138 162 3,5 2,0 85 164 195 4,5 2,5 80 108 123 3,0 1,0 82 121 141 3,5 1,5 86 148 172 3,5 2,0 90 174 205 4,5 2,5 85 118 136 3,5 1,0 90 130 151 3,5 2,0 91 158 185 3,5 2,0 95 184 215 4,5 2,5 91 158 185 3,5 2,0 95 140 162 3,5 2,0 98 166 195 4,5 2,5 96 132 151</td> <td>78 146 172 3,5 2,0 3,2800 75 103 118 3,0 1,0 0,6040 77 116 136 3,5 1,5 1,0700 81 138 162 3,5 2,0 2,5400 85 164 195 4,5 2,5 4,8500 80 108 123 3,0 1,0 0,6380 82 121 141 3,5 1,5 1,1800 86 148 172 3,5 2,0 3,0600 90 174 205 4,5 2,5 5,7400 85 118 136 3,5 1,0 0,8450 90 130 151 3,5 2,0 1,4000 91 158 185 3,5 2,0 3,6300 95 184 215 4,5 2,5 6,7200 91,5 123,5 141 3,5 1,0 0,89</td>	78 146 172 3,5 2,0 75 103 118 3,0 1,0 77 116 136 3,5 1,5 81 138 162 3,5 2,0 85 164 195 4,5 2,5 80 108 123 3,0 1,0 82 121 141 3,5 1,5 86 148 172 3,5 2,0 90 174 205 4,5 2,5 85 118 136 3,5 1,0 90 130 151 3,5 2,0 91 158 185 3,5 2,0 95 184 215 4,5 2,5 91 158 185 3,5 2,0 95 140 162 3,5 2,0 98 166 195 4,5 2,5 96 132 151	78 146 172 3,5 2,0 3,2800 75 103 118 3,0 1,0 0,6040 77 116 136 3,5 1,5 1,0700 81 138 162 3,5 2,0 2,5400 85 164 195 4,5 2,5 4,8500 80 108 123 3,0 1,0 0,6380 82 121 141 3,5 1,5 1,1800 86 148 172 3,5 2,0 3,0600 90 174 205 4,5 2,5 5,7400 85 118 136 3,5 1,0 0,8450 90 130 151 3,5 2,0 1,4000 91 158 185 3,5 2,0 3,6300 95 184 215 4,5 2,5 6,7200 91,5 123,5 141 3,5 1,0 0,89


Однорядные шариковые подшипники разъемные d = 10 ... 20 мм

Рази	иеры					грузоподъемность кая статическая	Предельная вращения дл		Обозначение подшипника
d	D	В	r _s мин	r _{1S} мин	C _r	C _{or}	пластической смазкой	й жидким маслом	
ММ					кН		МИН ⁻¹		
10	28	8,0	0,30	0,15	6,448	2,914	25000	31000	E10Y
12 15	32 35	7,0 8,0	0,30 0,30	0,15 0,15	6,363 8,395	3,369 4,584	22000 20000	28000 24000	E12TNG E15
	35	8,0	0,30	0,15	8,395	4,584	20000	24000	E15Y
17	44	11,0	0,60	0,30	10,713	6,077	16000	19000	E17 B017
20	44	11,0 12,0	0,60 1,00	0,30 0,60	14,723 15,876	8,066 9,149	14000 14000	17000 17000	E20
		,-	.,	-,		-,			

Присо	единительны	е размеры		Macca
d	d _а мин	D _а макс	r _a Makc	~
ММ				КГ
10 12 15	12,0 14,0 17,2 17,2 22,0	25,5 29,0 31,8 31,8 39,0	0,3 0,3 0,3 0,3 0,6	0,0220 0,0290 0,0340 0,0340 0,0790 0,0750 0,0890
20	22,0 22,0 26,0	39,0 39,0 42,0	0,6 0,6 1,0	0,0790 0,0750 0,0890

Однорядные радиальноупорные шариковые подшипники



Дорожки качения подшипниковых колец однорядных радиально-упорных шариковых подшипников проектируются таким образом, чтобы линия, соединяющая их точки контакта с шариками, образовала с линией, перпендикулярной на ось подшипника, острый угол так называемый угол контакта. Такие подшипники неразъемные. Подшипники в исполнении В и ВЕ имеют угол контакта $\alpha = 40^\circ$. Такая конструкция подшипника позволяет воспринимать радиальные нагрузки, действующие одновременно с относительно большей осевой нагрузкой в одном направлении. Для восприятия осевой нагрузки в обеих направлениях устанавливаются эти подшипники в парах друг напротив друга.

В программе производства имеются также подшипники в исполнении, обозначаемые AA, у которых угол контакта составляет $\alpha = 26^{\circ}$, в исполнении, обозначаемом A, у которых угол контакта $\alpha = 25^{\circ}$.

Однорядные шариковые радиально-упорные подшипники типа A70 и A72 или B70 и B72 предназначены для высоких частот вращения. От стандартных подшипников этой конструктивной группы отличаются внутренней конструкцией подшипниковых колец, размером угла контакта, исполнением сепаратора и высокой точностью. Подшипники неразъемные.

Подшипники с исполнением с обозначением СВ имеют угол контакта $\alpha = 10^{\circ}$. Выпускаются как правило по классу точности Р4, Р4А и предназначены для сверхточных подшипниковых узлов с высокой частотой вращения, например для шлифовальных электрошпинделей и приборов.

Подшипники исполнения с обозначением СА имеют угол контакта $\alpha = 12^{\circ}$.

Подшипники исполнения С имеют угол контакта $\alpha = 15^{\circ}$ выпускаются по классам точности Р5, Р5А и Р4, Р4А и применяются преимущественно для подшипниковых узлов шпинделей металлорежущих станков и аналогичных устройств.

Подшипники исполнения АА выпускаются по классам точности Р5 и Р4 и предназначены для подшипниковых узлов шпинделей металлорежущих станков и аналогичных устройств с относительно большой осевой нагрузкой.

Основные размеры

Основные размеры подшипников соответствуют стандарту ISO 15 и приведены в разделе таблиц в настоящей публикации.

Обозначение

Обозначения подшипников в основном исполнении содержатся в разделе таблиц настоящей публикации. Отличия подшипников по сравнению с основным исполнением обозначаются дополнительными знаками (раздел 2.2).

Сепаратор

Подшипники типа 72 и 73 с ипсолнением В и АА имеют листоштампованный сепаратор, обозначение которого не указывается. Подшипники типа 72 и 73 с исполнением ВЕ имеют массивный сепаратор из полиамида, который усилен стекловолокнами (TNG).

Подшипники типа A70 и A72, предназначенные для высоких частот вращения имеют массивный сепаратор с текстолита, центрируемый на наружном кольце (ТА) и подшипники типа B70 и B72 имеют массивный сепаратор из текстолита, центрируемый на внутреннем кольце (ТВ), кроме подшипников B7014AA, у которых массивный сепаратор из латуни, центрируемый на внутреннем кольце.

Внутренний зазор

Привычным способом применения однорядных радиально-упорных шариковых подшипников является установка в парах, где рабочий зазор или натяг устанавливается при их установке и зависит от конструкции узла и условий работы.

Объединение подшипников в пары

Подшипники с исполнением А70, А72, В70 и В72, предназначенные для высоких частот, поставляются сдвоенными.

Сдвоенные подшипники "О"

Пара обладает высокой жесткостью относительно наклона и воспринимает осевые усилия в обеих направлениях всегда посредничеством одного из подшипников. Используются для восприятия опрокидывающего момента. Схема установки пары указана в разделе 2.2.

Сдвоенные подшипники "Х"

Пара имеет такие-же характеристики с точки зрения осевых нагрузок как вариант "О", однако у нее жесткость меньше относительно восприятия опрокидывающего момента.

Схема установки пары указана в разделе 2.2.

Сдвоенные подшипники "Т"

Пара подшипников отличается высокой жесткостью при восприятии опрокидывающего момента, однако осевую нагрузку может воспринимать лишь в одном направлении.

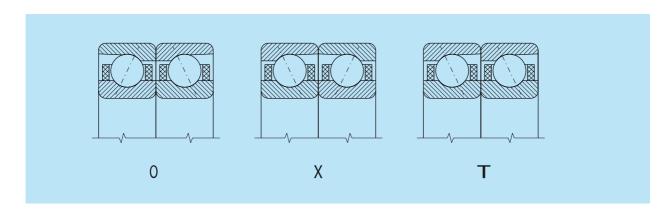


Схема установки пары указана в разделе 2.2.

Пара сдвоенных подшипников поставляется в общей упаковке по той причине, чтобы предотвратить замену и место наибольшего радиального биения для нужд монтажа обозначается риской на торцах колец. Взаимное положение колец относительно друг друга обозначается сходящимися линиями в виде буквы "V" на наружной цилиндрической поверхности сдвоенной пары подшипников. Подшипники в узел монтируются так, чтобы риски, обозначающие место наибольшего радиального биения, находились на прямой, паралельной с осью вала.

Сдвоенные пары "X" и "О" поставляются с осевым натягом малым (L), средним (M) и большим (S). Пример обозначения такой пары: B7204CBTB P4OL или A7201AATA P5XM.

Осевой натяг определяется по формуле:

	$F_{p} = k C_{r} \cdot 10^{-2}$	[ĸH]
F _n -	осевой натяг по таблице	[ĸH]
C _r -	радиальная основная динамическая грузоподъемность	[ĸH]
k –	коэффициент осевого натяга по таблице	

Осевой натяг			Коэффициент k Угол контакта α							
		10°	12°	15°	26°					
Размер	Обозначение	Исполнение СВ	е подшипника СА	С	AA					
Малый	L	0,4	0,5	0,7	1,2					
Средний	M	1,4	1,6	2,0	3,5					
Большой	S	2,8	3,2	4,0	7,0					

Радиальная основная динамическая грузоподъемность пары С_{ге} составляет:

$$C_{rs} = 1,62 \cdot C_{r}$$
 [KH]

Радиальная основная статическая грузоподъемность пары C_{ors} составляет::

$$C_{org} = 2 \cdot C_{org}$$
 [KH]

Величины С, и С, приведены в разделе таблиц настоящей публикации.

Предельная частота вращения для сдвоенной пары меньше, чем величина, которая указана в разделе таблиц для самостоятельного подшипника:

• пара с малым натягом (L) на 20%

Объединение групп трех или четырех подшипников

Для специальных случаев, если требуются высокая точность, жесткость, грузоподъемность и высокая частота вращения подшипникового узла, поставляются подшипники типа A70, A72, B70 и B72, которые объединяются в группу трех или четырех подшипников.

Схема такой установки указана в разделе 2.2.

Применение группировки трех или четырех подшипников рекомендуем с учетом особенностей таких случаев проконсультировать с поставщиком.

Универсальное объединение подшипников

Однорядные радиально-упорные шариковые подшипники B70..СТА в универсальном исполнении (U) предназначены для их объединения в парах, именно в вариантах X, О или T, или-же для объединения в группы трех или четырех подшипников. Выпускаются с легким натягом (UL) при сдвоении X и О.

В случае других типов подшипников необходимо согласовать с поставщиком поставки подшипников в универсальном исполнении..

Наклон

Однорядные радиально-упорные шариковые подшипники, устанавливаемые в парах чувствительны относительно взаимной несоосности подшипниковых колец.

Посадки установочных поверхностей для подшипников классов точности Р5 и Р4 следующие:

Класс точности	Вал Нагрузка внутрені окружная	него кольца точечная	Отверстие в корпусе Нагрузка наружного ко точечная ведущий подшипник	льца свободный подшипник	окружная
P5	js5	h5	JS5	H5	M5
P4	js4	h4	JS5	H5	M5

Радиальная эквивалентная динамическая нагрузка

Подшипники с углом контакта $\alpha = 40^{\circ}$, исполнение В и ВЕ:

Отдельные подшипники::

$$P_r = F_r$$
 для $F_a/F_r \le 1,14$ [кН] $P_r = 0,35F_r + 0,57F_a$ для $F_a/F_r > 1,14$ [кН]

Подшипники с углом контакта $\alpha = 26^{\circ}$, исполнение AA

Подшипники с углом контакта $\alpha = 25^{\circ}$, исполнение А

Отдельные подшипники и сдвоенные пары, конфигурация "Т":

$$P_r = F_r$$
 для $F_a/F_r \le 0,68$ [кН] $P_r = 0,41F_r + 0,87F_a$ для $F_a/F_r > 0,68$ [кН]

Сдвоенные пары, конфигурации "О" и "Х":

$$P_r = F_r + 0.92F_a$$
 для $F_a/F_r \le 0.68$ [кН] $P_r = 0.67F_r + 1.14F_a$ для $F_a/F_r > 0.68$ [кН]

Подшипники с углом контакта $\alpha = 15^{\circ}$, исполнение C:

Отдельные подшипники и сдвоенные пары, конфигурация "Т":

$$P_r = F_r$$
 для $F_a/F_r \le e$ [кН] $P_r = 0.44F_r + YF_a$ для $F_a/F_r > e$ [кН]

F _a iC _{or}	е	Υ
0,015	0,38	1,47
0,029	0,40	1,40
0,058	0,43	1,30
0,087	0,46	1,23
0,12	0,47	1,19
0,17	0,50	1,12
0,29	0,55	1,02
0,44	0,56	1,00
0,58	0,56	1,00

Сдвоенные пары, конфигурации "О" и "Х":

$$P_r = F_r + Y_1 F_a$$
 для $F_a / F_r \le e$ [кН] $P_r = 0.72 F_r + Y_2 F_a$ для $F_a / F_r > e$ [кН]

F _a C _{or}	е	Y,	Y ₂
0,015	0,38	1,65	2,39
0,029	0,40	1,57	2,28
0,058	0,43	1,46	2,11
0,087	0,46	1,38	2,00
0,12	0,47	1,34	1,93
0,17	0,50	1,26	1,82
0,29	0,55	1,14	1,66
0,44	0,56	1,12	1,63
0,58	0,56	1,12	1,63
,	,	,	,

Подшипники с углом контакта $\alpha = 12^{\circ}$, исполнение CA:

Отдельные подшипники и сдвоенные пары, конфигурация "Т":

$$P_r = F_r$$
 для $F_a / F_r \le e$ [кН] $P_r = 0.45F_r + YF_a$ для $F_a / F_r > e$ [кН]

F _a iC _{or}	е	Υ
0,014	0,30	1,81
0,029	0,34	1,62
0,057	0,37	1,46
0,086	0,41	1,34
0,11	0,45	1,22
0,17	0,48	1,13
0,29	0,52	1,04
0,43	0,54	1,01
,	•	,
0.57	0.54	1.00

ации "О" и "X":
$$P_r = F_r + Y_1 F_a \qquad \qquad \text{для } F_a / F_r \leq e \\ P_r = 0,74 F_r + Y_2 F_a \qquad \qquad \text{для } F_a / F_r > e$$

для
$$F_a/F_r \le e$$
 для $F_a/F_r > e$

F _a C _{or}	е	Y ₁	Y_{2}	
0,014	0,30	2,08	2,94	
0,029	0,34	1,84	2,63	
0,057	0,37	1,69	2,37	
0,086	0,41	1,52	2,18	
0,11	0,45	1,39	1,98	
0,17	0,48	1,30	1,84	
0,29	0,52	1,20	1,69	
0,43	0,54	1,16	1,64	
0,57	0,54	1,16	1,62	

Подшипники с углом контакта $\alpha = 10^{\circ}$, исполнение CB: Отдельные подшипники и сдвоенные пары, конфигурация "Т":

$$P_r = F_r$$
 для $F_a/F_r \le e$ $P_r = 0,46F_r + YF_a$ для $F_a/F_r > e$

F _a iC _{or}	е	Y
0,014	0,29	1,88
0,029 0,057	0,32 0,36	1,71 1,52
0,086	0,38	1,41
0,11 0,17	0,40 0,44	1,34 1,23
0,29	0,49	1,10
0,43	0,54	1,01
0,57	0,54	1,00

Сдвоенные пары, конфигурации "О" и "Х"

$$P_r = F_r + Y_1 F_a$$
 для $F_a / F_r \le e$ $P_r = 0.46 F_r + Y_2 F_a$ для $F_a / F_r > e$

для
$$F_a/F_r \le \epsilon$$

Если вал установлен в двух однорядных радиально-упорных подшипниках, то воздействующая радиальная нагрузка распределяется на радиальную и осевую составляющие. Осевая нагрузка одного подшипника зависит от нагрузки и от размера угла контакта второго подшипника. Эти дополнительные внутренние усилия необходимо учитывать при расчете подшипника.

Следующая таблица показывает соотношения для различной организации подшипников при воздействии внешнего осевого усилия K_a , радиального усилия F_{rA} , или-же F_{rB} . Радиальные усилия действуют в точке пересечения прямой контакта с осью вала. (Размер "а" приведен в разделе таблиц). В расчете учитывается размер усилия лишь в абсолютных величинах. Расчитанное усилие F_a вводится в расчет радиальной эквивалентной динамической нагрузки P_r .

рганизация подшипников	Условия воздействия	Осевая нагрузк	а подшипников
	усилий	подшипник А	подшипник В
A B	$\frac{F_{\scriptscriptstylerA}}{Y_{\scriptscriptstyleA}} \leqq \frac{F_{\scriptscriptstylerB}}{Y_{\scriptscriptstyleB}}$ $K_{\scriptscriptstylea} \geqq 0$	$F_{aA} = F_{aB} + K_a$	$F_{\scriptscriptstyle{aB}}=e\;F_{\scriptscriptstyle{rB}}$
F _{rA} F _{rB}	$\frac{F_{rA}}{Y_{A}} > \frac{F_{rB}}{Y_{B}}$ $K_{a} \ge e (F_{rA} - F_{rB})$	$F_{aA} = F_{aB} + K_{a}$	$F_{\scriptscriptstyle{aB}}=e\;F_{\scriptscriptstyle{rB}}$
K _a F _{rA}	$\frac{F_{rA}}{Y_A} > \frac{F_{rB}}{Y_B}$ $K_a < e (F_{rA} - F_{rB})^{1}$	F _{aA} = e F _{rA}	$F_{\scriptscriptstyle aB} = F_{\scriptscriptstyle aA} - K_{\scriptscriptstyle a}$
A B B	$rac{F_{\scriptscriptstyle{fA}}}{Y_{\scriptscriptstyle{A}}} \geqq rac{F_{\scriptscriptstyle{fB}}}{Y_{\scriptscriptstyle{B}}}$ $K_{\scriptscriptstyle{a}} \geqq 0$	F _{aA} = e F _{rA}	$F_{\scriptscriptstyle{aB}}=F_{\scriptscriptstyle{aA}}+K_{\scriptscriptstyle{a}}$
F _{rA} F _{rB}	$\frac{F_{rA}}{Y_{A}} < \frac{F_{rB}}{Y_{B}}$ $K_{a} \geqq e \; (F_{rB} - F_{rA})$	F _{aA} = e F _{rA}	$F_{aB} = F_{aA} + K_{a}$
K _a F _{rA}	$\frac{F_{\scriptscriptstyle FA}}{Y_{\scriptscriptstyle A}} < \frac{F_{\scriptscriptstyle FB}}{Y_{\scriptscriptstyle B}}$ $K_{\scriptscriptstyle a} < e \; (F_{\scriptscriptstyle FB} - F_{\scriptscriptstyle FA})^{\scriptscriptstyle 1)}$	$F_{\scriptscriptstyleaA}=F_{\scriptscriptstyleaB}-K_{\scriptscriptstylea}$	F _{aB} = e F _{rB}

Радиальная эквивалентная статическая нагрузка

Подшипники с углом контакта $\alpha = 40^{\circ}$, исполнение BE и B:

$$P_{or} = 0.5F_{r} + 0.26F_{a}$$
 $(P_{or} \ge F_{r})$ [KH]

Подшипники с углом контакта α = 26°, исполнение AA и α = 25°, исполнение A: Отдельные подшипники и сдвоенные пары, конфигурация "Т":

$$P_{or} = 0.5F_{r} + 0.37F_{a}$$
 $(P_{or} \ge F_{r})$ [KH]

Сдвоенные пары, конфигурации "О" и "Х":

$$P_{or} = F_r + 0.74F_a \qquad [\kappa H]$$

Подшипники с углом контакта $\alpha = 15^{\circ}$, исполнение C:

Отдельные подшипники и сдвоенные пары, конфигурация "Т":

$$P_{or} = 0.5F_{r} + 0.46F_{a}$$
 $(P_{or} \ge F_{r})$ [KH]

Сдвоенные пары, конфигурации "О" и "Х":

$$P_{or} = F_r + 0.92F_a \qquad [\kappa H]$$

Подшипники с углом контакта $\alpha = 12^{\circ}$, исполнение CA:

Отдельные подшипники и сдвоенные пары, конфигурация "Т":

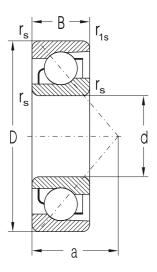
$$P_{or} = 0.5F_{r} + 0.47F_{a}$$
 $(P_{or} \ge F_{r})$ [KH]

Сдвоенные пары, конфигурации "О" и "Х":

$$P_{cr} = F_r + 0.94F_a \qquad [\kappa H]$$

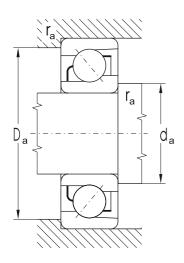
Подшипники с углом контакта $\alpha = 10^{\circ}$, исполнение CB:

Отдельные подшипники и сдвоенные пары, конфигурация "Т":

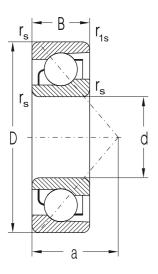

$$P_{or} = 0.6F_{r} + 0.5F_{a}$$
 $(P_{or} \ge F_{r})$ [KH]

Сдвоенные пары, конфигурации "О" и "Х":

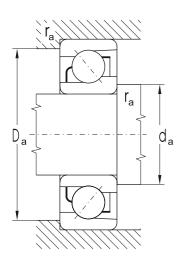
$$P_{or} = F_r + 0.97F_a$$
 [KH]


Однорядные шариковые радиально-упорные подшипники d = 10 ... 50 мм

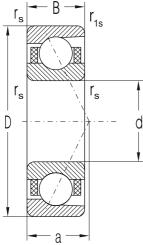
Размеры					·	узоподъемность	Предельная ч вращения при пластической	1 смазке	Обозначение подшипника	
d	D	В	r _s мин	r _{1S} мин	a	С	ая статическая С _{ог}	смазкой	жидким маслом	
IM						кН		МИН ⁻¹		
10	30	9.0	0.60	0.30	13.0	6,963	3,290	21000	28000	7200BETNG
12	32	10,0	0,60	0,30	14,0	7,530	3,778	19000	26000	7201BETNG
15	35	11,0	0,60	0,30	12,0	8,970	4,875	17000	20000	7202AA
	35	11,0	0,60	0,30	16,0	8,040	4,368	17000	20000	7202B
	35	11,0	0,60	0,30	16,0	8,520	4,765	17000	20000	7202BETNG
	42	13,0	1,00	0,60	18,0	13,034	6,575	14000	17000	7302BETNG
17	40	12,0	0,60	0,30	13,0	10,400	6,190	15000	18000	7203AA
	40	12,0	0,60	0,30	18,0	11,000	6,070	17000	20000	7203BETNG
	47	14,0	1,00	0,60	15,0	15,115	7,890	12600	15000	7303AA
	47	14,0	1,00	0,60	20,0	13,795	7,200	12600	15000	7303B
	47	14,0	1,00	0,60	20,0	14,798	8,000	12600	15000	7303BETNG
20	47	14,0	1,00	0,60	15,0	14,858	8,535	12600	15000	7204AA
	47	14,0	1,00	0,60	21,0	13,307	7,645	12600	15000	7204B
	47	14,0	1,00	0,60	21,0	15,080	8,645	12600	15000	7204BETNG
	52	15,0	1,10	0,60	23,0	17,400	9,620	12600	15000	7304B
	52	15,0	1,10	0,60	23,0	18,800	10,400	13000	16000	7304BETNG
25	52	15,0	1,00	0,60	17,0	16,200	10,600	10600	12600	7205AA
23	52	15,0	1,00	0,60	24,0	15,800	9,810	12600	15000	7205BETNG
	62	17,0	1,10	0,60	27,0	24,380	14,570	9400	11000	7305B
	62	17,0	1,10	0,60	19,0	25,600	13,900	9400	11000	7305AMB
30	62	16,0	1,00	0,60	27,0	20,700	13,600	9400	11000	7206B
30	62	16,0		0,60	27,0	22,400	14,700	10600	12000	7206BETNG
35	80	21,0	1,00 1,50	1,00	35,0	36,650	24,100	7100	8400	7307B
40	80	18,0	1,10	0,60	23,0	37,600	26,600	7100	8400	7208AA
40	80				34,0	36,900	24,600	7900	9400	7208BETNG
	90	18,0 23,0	1,10 1,50	0,60	27,2	48,200	33,600	6300	7500	7308AA
	90	23,0	1,50	1,00 1,00	39,0	44,700	30,400	7100	8400	7308BETNG
15										
45	85	19,0	1,10	0,60	25,5	39,800	29,300	6300	7500	7209AA
	85	19,0	1,10	0,60	37,0	38,300	27,100	7500	8900	7209BETNG
50	100	25,0	1,50	1,00	43,0	58,300	40,386	5600 6000	6700	7309B
SU	90	20,0	1,10	0,60	27,0	42,429	32,400		7100	7210AA
	90	20,0	1,10	0,60	39,0	39,800	29,900	6700	7900	7210BETNG



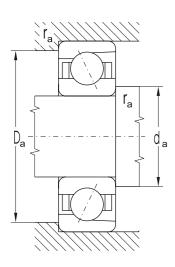
Присое	единительные	размеры		Macca
d	d _а мин	D _а макс	r _a Makc	~
ММ				КГ
10	14,5	25,5	0,6	0,0300
12	16,5	27,5	0,6	0,0300
15	19,0	31,0	0,6	0,0570
10	19,0	31,0	0,6	0,0500
	19,0	31,0	0,6	0,0430
	21,0	36,0	1,0	0,0800
17	21,0	36,0	0,6	0,0700
	21,0	36,0	0,6	0,0700
	23,0	41,0	1,0	0,1200
	23,0	41,0	1,0	0,1200
	23,0	41,0	1,0	0,1070
20	25,0	42,0	1,0	0,1100
	25,0	42,0	1,0	0,1100
	25,0	42,0	1,0	0,1000
	26,0	45,0	1,0	0,1500
	26,0	45,0	1,0	0,1430
25	30,0	47,0	1,0	0,1350
	30,0	47,0	1,0	0,1350
	31,0	55,0	1,0	0,2400
	31,0	55,0	1,0	0,2640
30	36,0	56,0	1,0	0,2000
	35,0	56,0	1,0	0,1900
35	42,0	71,0	1,5	0,4800
40	47,0	73,0	1,0	0,3700
	47,0	73,0	1,0	0,3700
	47,0	81,0	1,5	0,6600
	47,0	81,0	1,5	0,6600
45	52,0	78,0	1,0	0,4250
	52,0	78,0	1,0	0,4250
50	52,0	91,0	1,5	0,8800
50	57,0	83,0	1,0	0,4800
	57,0	83,0	1,0	0,4800


Однорядные шариковые радиально-упорные подшипники $d = 55 \dots 75 \text{ мм}$

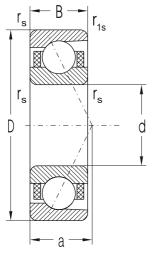
Pasi	меры					Основная гру	зоподъемность	Предельная ча	стота	Обозначение
d	D	В	r _s мин	r _{1S} мин	a		а статическая С _{ог}	вращения при с пластической смазкой		подшипника
ММ						кН		мин ⁻¹		
55	100 120	21,0 29,0	1,50 2,00	1,00 1,00	29,5 51,0	52,628 78,742	40,460 56,380	5300 4700	6300 5600	7211AA 7311B
65	110 120 140	22,0 23,0 33,0	1,50 1,50 2,10	1,00 1,00 1,10	32,0 34,0 41,0	63,400 70,800 110,000	50,625 59,600 84,100	5000 4500 4000	5300 4700	7212AA 7213AA 7313AA
70 75	125 150 130	24,0 35,0 25,0	1,50 2,10 1,50	1,00 1,10 1,00	53,0 44,5 56,0	69,400 123,000 71,000	57,300 96,200 61,900	4200 3800 4200	5000 4500 5000	7214B 7314AA 7215B
73	160 160	37,0 37,0	2,10 2,10	1,10 1,10	47,0 68,0	142,485 127,615	107,625 96,415	3300 3300	4000 4000	7315AA 7315B



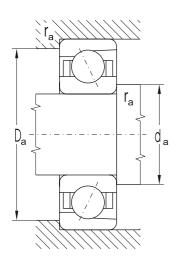
Присое	динительны	е размеры		Macca
d	d _а мин	D _а макс	r _a Makc	~
1M				КГ
55	62	91	1,5	0.6200
55	65	110	2.0	0,6300 1,4500
60	67	101	2,0 1,5	0,8000
60 65	72	111	1,5	1,0000
	76	128	2.0	2,7100
70	77	116	1,5 2,0	1,1000
75	81 82	138 121	2,0	3,1600
75	02 86	148	1,5	1,2100 3,8800
	86 86	148	2,0 2,0	3,8800
			_,0	3,0000


Однорядные шариковые радиально-упорные подшипники для высоких частот вращения $d=7 \dots 40 \text{ мм}$

	- a	·								
Разм	иеры					Основная гр	рузоподъемность	Предельная ча вращения при		Обозначение подшипника
						1.1	кая статическая	пластической	жидким	
d	D	В	r _s мин	r _{1s} мин	a	C _r	C _{or}	смазкой	маслом	
ММ						кН		мин ⁻¹		
7	22	7,0	0,30	0,15	5,0	2,220	0,900	94000	140000	A727CBTA
7 9	26	8,0	0,60	0,13	5,5	3,650	1,640	71000	106000	A729CBTA
10	30	9,0	0,60	0,30	6,0	5,000	2,290	60000	89000	B7200CBTB
10	30	9,0	0,60	0,30	6,5	6,670	2,900	42000	63000	B7200CBTB
12	32	10,0	0,60	0,30	7,0	5,480	2,655	56000	84000	B7201CBTB
12	32	10,0	0,60	0,30	7,5	7,430	3,465	38000	56000	B7201CATB
	32	10,0	0,60	0,30	10,5	7,045	3,210	33000	50000	AC7201ATA
15	35	11,0	0,60	0,30	7,5	6,480	3,450	50000	75000	B7202CBTB
.0	35	11,0	0,60	0,30	8,0	8,265	4,180	33000	50000	B7202CATB
17	35	10,0	0,60	0,15	9,0	6,240	3,470	30000	45000	A7003CTA
17	40	12,0	0,60	0,30	8,5	7,830	4,250	45000	67000	B7203CBTB
	40	12,0	0,60	0,30	9,0	10,206	5,290	28000	42000	B7203CATB
20	42	12,0	0,60	0,30	10,0	9,830	5,450	28000	42000	A7004CTA
20	47	14,0	1,00	0,60	10,0	9,600	5,540	40000	60000	B7204CBTB
	47	14,0	1,00	0,60	10,5	13,670	7,322	25000	38000	B7204CATB
	47	14,0	1,00	0,60	15,0	13,000	6,990	22000	33000	B7204AATB
25	47	12,0	0,60	0,30	11,0	11,080	6,870	25000	38000	A7005CTA
20	52	15,0	1,00	0,60	11,0	13,125	7,960	33000	50000	B7205CBTB
	52	15,0	1,00	0,60	11,5	14,815	8,630	22000	33000	B7205CATB
	52	15,0	1,00	0,60	17,0	13,960	8,155	20000	30000	B7205AATB
30	55	13,0	1,00	0,60	12,0	14,400	9,550	22000	30000	A7006CTA
00	62	16,0	1,00	0,60	12,0	16,810	10,720	28000	42000	B7206CBTB
	62	16,0	1,00	0,60	13,0	20,570	12,420	20000	30000	B7206CATB
	62	16,0	1,00	0,60	19.0	19,420	11,580	17000	25000	B7206AATB
35	62	14,0	1,00	0,60	14,0	18,290	12,700	17000	25000	A7007CTA
00	62	14,0	1,00	0,60	18,5	17,300	12,050	9400	11000	B7007AATB
	72	17,0	1,10	0,60	13,0	21,015	14,345	25000	38000	B7207CBTB
	72	17,0	1,10	0,60	14,0	28,935	18,600	16000	24000	B7207CATB
	72	17,0	1,10	0,60	15,0	30,660	20,295	16000	24000	B7207CAMB
40	68	15,0	1,00	0,60	20,5	18,560	14,135	8400	10000	B7008AATB
10	80	18,0	1,10	0,60	14,0	24,500	17,300	22000	33000	B7208CBTB
	80	18,0	1,10	0,60	15,5	36,730	23,775	13000	20000	B7208CATB
	00	10,0	1,10	0,00	10,0	00,700	20,770	10000	20000	DIEGOOAID



Присо	единительны	е размеры		Macca
d	d _а мин	D _а макс	r _а макс	~
ММ				КГ
7	9,2	19,5	0,3	0,0134
9	12,0	22,5	0,6	0,0197
10	14,0	26,0	0,6	0,0270
	14,0	26,0	0,6	0,0280
12	16,0	28,0	0,6	0,0350
	16,0	28,0	0,6	0,0360
	16,0	28,0	0,6	0,3060
15	19,0	31,0	0,6	0,0420
	19,0	31,0	0,6	0,0420
17	19,0	33,0	0,3	0,0390
	21,0	36,0	0,6	0,0600
	21,0	36,0	0,6	0,0610
20	24,0	38,0	0,6	0,0680
	25,0	42,0	1,0	0,0980
	25,0	42,0	1,0	0,1000
	25,0	42,0	1,0	0,1020
25	28,0	43,0	0,6	0,0800
	30,0	47,0	1,0	0,1190
	30,0	47,0	1,0	0,1220
	30,0	47,0	1,0	0,1240
30	34,0	50,0	1,0	0,1160
	35,0	57,0	1,0	0,1840
	35,0	57,0	1,0	0,1890
	35,0	57,0	1,0	0,1920
35	39,5	57,0	1,0	0,1550
	39,5	57,0	1,0	0,1480
	42,0	65,0	1,0	0,2680
	42,0	65,0	1,0	0,2750
	42,0	65,0	1,0	0,3230
40	47,0	61,0	1,0	0,1850
	47,0	73,0	1,0	0,3370
	47,0	73,0	1,0	0,3470
	,0	. 5,0	.,0	5,5170


Однорядные шариковые радиально-упорные подшипники для высоких частот вращения $d = 45 \dots 130 \text{ мм}$

Pasi	меры					Основная	грузоподъемность	Предельная час	стота	Обозначение
								вращения при с		подшипника
							ская статическая	пластической	жидким	
d	D	В	$r_{_{\rm S}}$	r _{1s}	a	C_r	C_{or}	смазкой	маслом	
			МИН	МИН						
ММ						кН		МИН ⁻¹		
45	75	16,0	1,00	0,60	16,0	23,410	18,140	13000	20000	A7009CTA
	85	19,0	1,10	0,60	15,0	28,295	20,310	20000	30000	B7209CBTB
	85	19,0	1,10	0,60	16,5	36,855	24,645	12600	19000	B7209CATB
	100	25,0	1,50	1,00	28,0	60,330	38,775	5600	6700	B7309CATB
50	80	16,0	1,0	0,60	20,0	22,660	18,520	9500	11000	B7010AATB
	90	20,0	1,10	0,60	16,0	32,330	23,560	18000	27000	B7210CBTB
	90	20,0	1,10	0,60	17,5	38,990	27,260	12000	18000	B7210CATB
	90	20,0	1,10	0,60	26,0	36,560	25,920	10600	16000	B7210AATB
55	90	18,0	1,10	0,60	26,5	30,990	25,380	6300	7500	B7011AATB
	100	21,0	1,50	1,00	17,0	38,460	29,120	17000	25000	B7211CBTB
	100	21,0	1,50	1,00	18,5	48,200	34,500	11000	17000	B7211CATB
60	110	22,0	1,50	1,00	18,0	42,980	33,800	15000	22000	B7212CBTB
	110	22,0	1,50	1,00	20,0	58,260	42,600	10000	15000	B7212CATB
	110	22,0	1,50	1,00	32,0	54,820	39,960	8900	13000	B7212AATB
65	120	23,0	1,50	1,00	21,5	70,500	54,780	8900	13000	B7213CATB
70	110	20,0	1,10	0,60	32,0	41,153	36,460	7900	12000	B7014AATB
	125	24,0	1,50	1,00	20,5	58,560	47,660	12600	19000	B7214CBTB
	125	24,0	1,50	1,00	22,5	76,650	60,135	7900	12000	B7214CATB
75	130	25,0	1,50	1,00	23,5	76,530	61,390	7500	11000	B7215CATB
	130	25,0	1,50	1,00	37,5	71,525	58,325	6700	10000	B7215AATB
	130	25,0	1,50	1,00	37,5	74,900	62,490	6700	10000	B7215AAMB
80	125	22,0	1,10	0,60	22,0	55,360	50,013	7500	11000	B7016CATB
	125	22,0	1,10	0,60	36,0	53,440	49,440	6700	10000	B7016AATB
	140	26,0	2,00	1,00	24,5	89,500	73,050	6700	10000	B7216CATB
-05	140	26,0	2,00	1,00	40,0	84,070	68,040	6300	9400	B7216AATB
85	130	22,0	1,10	0,60	37,0	54,440	52,690	6300	9400	B7017AATA
	130	22,0	1,10	0,60	37,0	56,240	55,330	6300	9400	B7017AAMB
	150	28,0	2,00	1,00	26,5	100,520	86,080	6300	9400	B7217CATB
	150	28,0	2,00	1,00	42,5	94,260	80,670	6000 6300	8900	B7217AATB
90	140	24,0	1,50 1,50	1,00	24,0 40,0	67,630 65,200	62,470	4000	9400 4700	B7018CATB B7018AATB
100	140 180	24,0 34,0	2,10	1,00 1,10	51,0	65,290 141,100	61,755 120,960	5300	7900	B7220AATB
120	180	28,0	2,10	1,10	30,0	101,100	103,660	5000	7500	B7024CATB
120	180		2,00	1,00	50,5	96,100	103,660	3000	3500	B7024AATB
130	165	28,0 11,0	1,00	0,50	41,5	13,475	19,100	3200	3800	B70826AAMB
130	100	11,0	1,00	0,50	41,3	13,473	19,100	3200	3000	D7 0020AAWID

Присо	единительны	е размеры		Macca	
d	d _а мин	D _а макс	r _a Makc		
ММ				KL	
45	49	70	1,0	0,2420	
	52	78	1,0	0,3810	
	52	78	1,0	0,3910	
	54	91	1,5	0,7710	
50	57	73	1,0	0,4310	
	57	83	1,0	0,4430	
	57	83	1,0	0,4430	
	57	83	1,0	0,4470	
55	62	83	1,0	0,3950	
	62	91	1,5	0,5670	
	62	91	1,5	0,5820	
60	67	101	1,5	0,7350	
	67	101	1,5	0,7540	
	67	101	1,5	0,7590	
65	72	111	1,5	0,9940	
70	75	103	1,0	0,5970	
	77	116	1,5	1,0400	
	77	116	1,5	1,0700	
75	82	121	1,5	1,1600	
	82	121	1,5	1,2600	
	82	121	1,5	1,3900	
80	85	118	1,0	0,8410	
	85	118	1,0	0,8480	
	90	130	2,0	1,4100	
0.5	90	130	2,0	1,4200	
85	90	123	1,0	0,9120	
	90 95	123 140	1,0	1,0600 1,8000	
	95 95	140	2,0 2,0	1,8200	
90	96	132	1,5	1,1500	
90	98	130	1,5	1,1600	
00	112	168	2,0	3,3200	
20	128	171	2,0	2,1000	
20	132	168	2,0	2,0900	
30	138	158	2,0	0,6350	
	. 50	.00	_,0	-,	

Двухрядные радиальноупорные шариковые подшипники

Двухрядные радиально-упорные шариковые подшипники отвечают в принципе сдвоенной паре однорядных шариковых радиально-упорных подшипников с конфигурацией "О". При одинаковых размерах (d и D) имеет сдвоенная пара меньше общую ширину.

Подшипник имеет на одной стороне канавку для ввода шариков. Если превосходящими являются усилия, действующие в одном направлении, то необходимо подшипник устанавливать таким образом, чтобы эти усилия действовали напротив канавки для ввода шариков. Возможно тоже поставлять подшипники с пластмассовым сепаратором РА6 или РА66, обозначение TNG.

Подшипники имеют конструкцию, которая позволяет угол контакта $\alpha = 32^{\circ}$. Благодаря этой конструкции могут подшипники воспринимать опрокидывающие моменты в осевой плоскости и таким образом, в случае нехватки места, для установки поворотной детали достаточно одного подшипника.

Основные размеры

Основные размеры подшипников совпадают с стандартом ISO 15 и приведены по каждому из подшипников в разделе таблиц настоящей публикации.

Обозначение

Обозначения подшипников в основном исполнениии приведены в разделе таблиц настоящей публикации. Отличия от основного исполнения обозначаются с помощью дополнительных знаков в соответствии с п. 2.2.

Сепаратор

Двухрядные радиально-упорные шариковые подшипники имеют листоштампованные стальные сепараторы. Исполнение не обозначается. Это не относится к подшипникам с пластмассовым сепаратором (TNG), так как у них нет отверстия для ввода шариков.

Точность

Подшипники стандартно выпускаются по нормальному классу точности P0 – такое обозначение не указывается. Для более ответственных случаев подшипниковых узлов выпускаются подшипники с повышенным классом точности P6.

Предельные значения точности размеров и хода подшипников находятся в таблицах 10 и 11 и совпадают с стандартом ISO 199 и ISO 492.

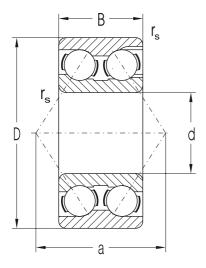
Осевой зазор

Стандартно выпускаемые подшипники имеют нормальный осевой зазор, который не обозначается. Для специальных случаев подшипниковых узлов поставляются подшипники с уменьшенным зазором C2 и увеличенным осевым зазором C3 и C4.

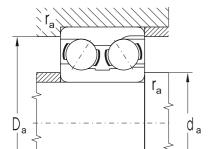
Наклон

Подшипники престваляют собой очень жесткий подшипниковый узел и они сверхчувствительны относительно несоосности колец, вызываемой монтажной неточностью.

Радиальная эквивалентная динамическая нагрузка


$$P_r = F_r + 0.73F_a$$
 для $F_a / F_r \le 0.86$ $P_r = 0.62F_r + 1.17F_a$ для $F_a / F_r > 0.86$

Радиальная эквивалентная статическая нагрузка


$$P_{or} = F_r + 0.63F_a$$

Двухрядные радиально-упорные шариковые подшипники d = 10 ... 75 мм

Pas	вмеры				Основная	трузоподъ	емность		Предельная ча	астота	Обозначение подш.
					динамиче	еская	статиче	ская	вращения при	смазке	
d	D	В	r _s мин	a		C_r	С _{ог} сепараторо		пластической	жидким	
			МИН		для подц стальным	ипников с	сепараторо стальным)M:	смазкой	маслом	
					CICUIDADIM	масовым	CICUIDHDIIV	Масовым			
ММ					кН				МИН ⁻¹		
10	30	14,0	0,60	20	8,41	6,20	5,84	3,40	16000	19000	3200X
	30	14,3	0,60	20	8,41	6,20	5,84	3,40	16000	19000	3200
12	32	15,9	0,60	22	10,00	8,20	7,08	4,50	14000	17000	3201
15	35	15,9	0,60	23	9,44	9,00	7,50	5,40	13000	16000	3202
	42	19,0	1,00	27	15,80	13,50	11,90	8,20	10600	12600	3302
17	40	17,5	0,60	27	13,10	11,50	10,60	7,10	11000	13000	3203
	47	22,2	1,00	31	21,50	18,00	16,20	10,80	9400	11000	3303
20	47	20,6	1,00	31	18,10	16,70	15,00	10,80	9400	11000	3204
0.5	52	22,2	1,10	34	21,50	18,40	18,50	11,40	8400	10000	3304
25	52	20,6	1,00	35	19,60	18,20	18,10	12,60	8400	10000	3205
- 00	62	25,4	1,10	40	29,90	27,40	26,60	18,40	7100	8400	3305
30	62	23,8	1,00	41	28,20	25,00	27,10	18,00	7100	8400	3206
35	72 72	30,2	1,10	47	39,80	35,50	36,20	24,70	6000	7100	3306
35		27,0	1,10	47	38,30	33,30	37,60	24,70	6000	7100	3207
40	80	34,9 30,2	1,50 1,10	54	51,10 43,80	43,50 38,00	47,30	30,50 29,20	5300 5300	6300 6300	3307 3208
40		36,5	1,10	52 58	54,00		43,80 59,60	38,70	4700	5600	3308
45	90 85	30,2	1,10	56	47,30	53,00 43,20	51,10	33,00	5000	6000	3209
45	100	39,7	1,10	64	75,00	64,00	73,60	48,20	4200	5000	3309
50	90	30,2	1,10	59	54,10	42,60	58,40	35,10	4500	5300	3210
30	110	44,4	2,00	73	90,90	76,90	96,20	58,00	3800	4500	3310
55	100	33,3	1,50	64	67,70	51,40	66,80	47,00	4200	5000	3211
55	120	49,2	2,00	80	100,00	85,60	108,00	73,00	3300	4000	3311
60	110	36,5	1,50	71	75,00	64,80	85,80	52,60	3800	4500	3212
00	130	54,0	2,10	86	117,00	100,50	128,00	85,00	3200	3800	3312
65	120	38,1	1,50	76	82,50	70,10	94,40	65,20	3500	4200	3213
	140	58,7	2,10	94	133,00	115,00	147,00	98,00	3000	3500	3313
70	125	39,7	1,50	81	79,40	70,10	98,10	65,20	3200	3800	3214
75	130	41,3	1,50	84	87,40	75,00	110,00	72,40	3200	3800	3215
_		,				,					

Присое	единительны	е размеры		Macca
d	d _а мин	D _a макс	r _a Makc	~
ММ				КГ
10	14	25	0,6	0,0500
10	14	25	0,6	0,0500
12	16	27	0,6	0,0500
15	19	30	0,6	0,0000
10	21	36	1,0	0,1300
17	21	35	0,6	0,1000
	23	41	1,0	0,1900
20	25	42	1,0	0,1700
	27	45	1,0	0,2300
25	30	46	1,0	0,1900
	32	55	1,0	0,3700
30	35	56	1,0	0,3100
	37	65	1,0	0,5800
35	41	65	1,0	0,4800
	44	71	1,5	0,7800
40	46	73	1,0	0,6500
	49	81	1,5	1,0500
45	51	78	1,0	0,7000
	54	91	1,5	1,4100
50	56	83	1,0	0,7400
	60	100	2,0	1,9000
55	62	91	1,5	1,0500
	65	110	2,0	2,4800
60	67	101	1,5	1,3600
0.5	72	118	2,0	3,1700
65	72	111	1,5	1,7600
70	77	128	2,0	4,0100
70 75	77 82	116 121	1,5 1,5	1,9300
/5	82	121	1,5	2,0800

Двухрядные радиальные шариковые сферические подшипники

Подшипники проектированы с двумя рядами шариков и сферической дорожкой качения наружного кольца – это создает возможность для определенного наклона внутреннего кольца относительно наружного кольца вокруг центра подшипника без нарушения функции подшипника. Подшипники выпускаются с цилиндрическим или коническим отверстием и они неразъемные. Их способность по наклону при сохранении функции определяет применение подшипников в случаях, когда предпологается определенная несоосность отверстий в корпусах для подшипников или прогиб и вибрации вала. С учетом малого угла контакта и несовершенного прилегания шариков к дорожкам качения не подходят для восприятия больших осевых усилий.

Основные размеры

Основные размеры подшипников соответствуют ISO 15 и приведены по подшипникам в разделе таблиц настоящей публикации.

Обозначение

Обозначения подшипников в основном исполнении и исполнении с коническим отверстием приведены в разделе таблиц в настоящей публикации.

Отличия от основного исполнения обозначаются с помощью дополнительных знаков, которые указаны в разделе 2.2.

Коническое отверстие

Подшипники с коническим отверстием имеют отверстие с конусностью 1 : 12. На цилиндрические валы подшипники с коническим отверстием закрепляются с помощью закрепительных втулок. Обозначения втулок, соответствующим подшипникам приведены в разделе таблиц настоящей публикации.

Сепаратор

Подшипники имеют в основном исполнении как правило сепараторы так, как указано в следующей таблице (знак материала и исполнение сепаратора в большинстве случаев не указывается).

Подшипники с листоштампованными стальными или латунными сепараторами	Подшипники с массивными латунными или стальными сепараторми
d<10мм, 126	-
1200 1222	1224 1230
2200 2222	
1300 1322	1324
2304 232011)	2322

¹⁾ Подшипник 2305 выпускается с массивным сепаратором с отвверстием для ввода шариков (TNGN)

Точность

Подшипники стандартно выпускаются по нормальному классу точности P0, который не обозначается. Поставляются также подшипники для более ответственных подшипниковых узлов с повышенным классом точности P6.

Предельные величины отклонений по точности размеров и хода подшипников приведены в таблицах 10 и 11 и совпадают с стандартом ISO 199 и ISO 492.

Радиальный зазор

Стандартно выпускаемые подшипники имеют стандартный радиальный зазор, который не обозначается. Для специальных случаев подшипниковых узлов поставляются подшипники с уменьшенным зазором C2 или увеличенным радиальным зазором C3, C4 и C5.

Наклон

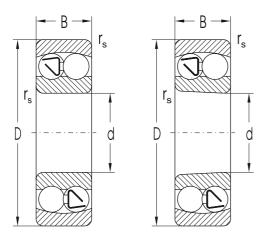
Значения допустимого наклона подшипников при сохранении функции приведены в следующей таблице.

Тип подшипника	Допустимый наклон
d<10мм 126, 13, 23	3°
12, 22	2°30'

Радиальная эквивалентная динамическая нагрузка

$$P_r = F_r + Y_1 F_a$$
 для $F_a / F_r \le e$ [кН] $P_r = 0.65 F_r + Y_2 F_a$ для $F_a / F_r > e$ [кН]

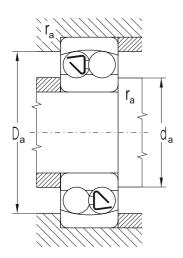
Значения коэффициентов e, Y_1 и Y_2 по соответствующим подшипникам указаны в разделе таблиц настоящей публикации.


Радиальная эквивалентная статическая нагрузка

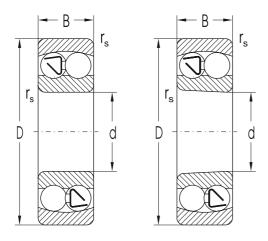
$$P_{or} = F_r + Y_0 F_a$$
 [KH]

Значения коэффициента Y_0 по соответствующим подшипникам указаны в разделе таблиц настоящей публикации.

8

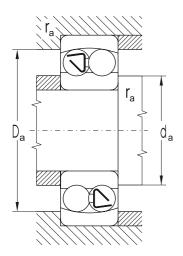

Двухрядные радиальные шариковые сферические подшипники (самоустанавливающиеся) $d = 6 \dots 60 \text{ мм}$

Κ


Pasw	еры				узоподъемность	Предельная ча		Обозначение п	одшипника
d	D	В	r _s	динамическ С _г	ая статическая С _{ог}	вращения при пластической смазкой	смазке жидким маслом	с цилиндрическим отверстием	с коническим отверстием
ИM				кН		МИН ⁻¹			
6	19	6,0	0,30	2,150	0,240	27000	32000	126	
10	30	14,0	0,60	7,280	1,580	25000	30000	2200	
12	32	10,0	0,60	5,590	1,260	24000	28000	1201	
15	35	11,0	0,60	7,410	1,740	21000	25000	1202	
	35	14,0	0,60	7,610	1,810	21000	25000	2202	
17	40	12,0	0,60	7,930	2,030	17000	20000	1203	1203K
20	47	14,0	1,00	9,950	2,660	14000	17000	1204	1204K
25	52	15,0	1,00	12,100	3,350	12600	15000	1205	1205K
	52	18,0	1,00	12,400	3,480	12600	15000	2205	2205K
	62	24,0	1,10	24,200	6,560	10000	12000	2305TNGN	2305KTNGN
30	62	16,0	1,00	15,600	4,730	11000	13000	1206	1206K
	62	20,0	1,00	15,300	4,550	11000	13000	2206	2206K
	72	19,0	1,10	21,200	6,310	9400	11000	1306	1306K
	72	27,0	1,10	31,200	8,740	8400	10000	2306	2306K
35	72	17,0	1,10	15,900	5,110	9400	11000	1207	1207K
	72	23,0	1,10	21,600	6,680	9400	11000	2207	2207K
40	80	18,0	1,10	19,000	6,560	7900	9400	1208	1208K
	90	23,0	1,50	29,600	9,810	7100	8400	1308	1308K
	90	33,0	1,50	44,900	13,300	6700	7900	2308	2308K
45	85	19,0	1,10	21,600	7,360	7500	8900	1209	1209K
	85	23,0	1,10	23,400	8,100	7500	8900	2209	2209K
	100	25,0	1,50	37,700	12,800	6300	7500	1309	1309K
	100	36,0	1,50	54,000	16,500	6000	7100	2309	2309K
50	90	20,0	1,10	22,900	8,100	7100	8400	1210	1210K
	90	23,0	1,10	23,400	8,410	7100	8400	2210	2210K
	110	27,0	2,00	43,600	14,100	5600	6700	1310	1310K
55	100	21,0	1,50	26,500	10,000	6300	7500	1211	1211K
	100	25,0	1,50	26,500	10,000	6300	7500	2211	2211K
60	110	22,0	1,50	30,200	11,700	5600	6700	1212	1212K
	110	28,0	1,50	33,800	12,600	5600	6700	2212	2212K
	130	31,0	2,00	57,200	20,700	4700	5600	1312	1312K

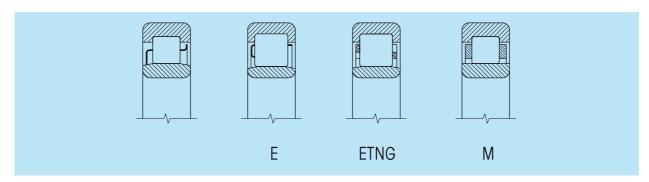
	d _a			Macca		Соответст-	Коэффициенты			
	Мин	D _а макс	r _a Makc	~	K	вующая втулка	е	Y ₁	Y ₂	Y ₀
ИМ				КГ						
6	8,2	17	0,3	0,0090			0,340	1,900	2,900	2.000
10	14	26	0,6	0,0470			0,650	1,000	1,500	1,000
2	16	18	0,6	0,0400			0,340	1,900	2,900	2,000
5	19	31	0,6	0,0490			0,330	1,900	2,900	2,000
	19	31	0,6	0,0600			0,490	1,300	2,000	1,300
17	21	36	0,6	0,0730	0,0710	H203	0,310	2,100	3,200	2,200
20	25	42	1,0	0,1200	0,1180	H204	0,270	2,300	3,600	2,400
25	30	47	1,0	0,1410	0,1380	H205	0,270	2,300	3,600	2,400
	30	47	1,0	0,1630	0,1580	H305	0,430	1,500	2,300	1,500
	31	55	1,0	0,3350	0,3270	H2305	0,470	1,300	2,100	1,400
30	35	57	1,0	0,2200	0,2160	H206	0,250	2,600	4,000	2,700
	35	57	1,0	0,2600	0,2540	H306	0,400	1,600	2,500	1,700
	36	65	1,0	0,3870	0,3810	H306	0,260	2,500	3,800	2,600
	36	65	1,0	0,5000	0,4890	H2306	0,440	1,400	2,200	1,500
35	42	65	1,0	0,3230	0,3170	H207	0,230	2,700	4,200	2,900
	42	65	1,0	0,4030	0,3960	H307	0,370	1,700	2,600	1,800
10	47	73	1,0	0,4170	0,4110	H208	0,220	2,900	4,400	3,000
	47	81	1,5	0,7150	0,7040	H308	0,240	2,600	4,100	2,700
	47	81	1,5	0,9250	0,9030	H2308	0,430	1,500	2,300	1,500
5	52	78	1,0	0,4650	0,4590	H209	0,210	3,000	4,600	3,100
	52	78	1,0	0,5450	0,5330	H309	0,310	2,100	3,200	2,200
	52	91	1,5	0,9570	0,9420	H309	0,250	2,500	3,900	2,700
	52	91	1,5	1,2300	1,2000	H2309	0,420	1,500	2,300	1,600
50	57	83	1,0	0,5250	0,5150	H210	0,200	3,100	4,900	3,300
	57	83	1,0	0,5900	0,5770	H310	0,290	2,200	3,400	2,300
	60	100	2,0	1,2100	1,1900	H310	0,240	2,700	4,100	2,800
55	62	91	1,5	0,7050	0,6930	H211	0,200	3,200	5,000	3,400
	62	91	1,5	0,8100	0,7920	H311	0,280	2,300	3,500	2,400
60	67	101	1,5	0,9000	0,8850	H212	0,190	3,400	5,300	3,600
	67	101	1,5	1,0900	1,0700	H312	0,280	2,300	3,500	2,400
	72	118	2,0	1,9600	1,9300	H312	0,230	2,800	4,300	2,900

Двухрядные радиальные шариковые сферические подшипники (самоустанавливающиеся) $d=65\dots 150\ \text{MM}$



K

				зоподъемность	Предельная ч		Обозначение п	Обозначение подшипника		
d	D	В	B ₁ 1)	r _s	динамическа: С _г	я статическая С _{ог}	вращения при пластической			
u	D		D ₁	's МИН	O _r	or	смазкой	маслом	с цилиндрическим	с коническим
							omacitori	macrom	отверстием	отверстием
ММ					кН		МИН ⁻¹			
65	120	23,0		1,50	31,200	12,300	5300	6300	1213	1213K
00	120	31,0		1,50	43,600	16,500	5300	6300	2213	2213K
70	125	31,0		1,50	44,200	17,100	5000	6000	2214	ZZTOR
70	150	51,0		2,10	111,000	37,600	3800	4500	2314	
75	130	25,0		1,50	39,000	15,500	4700	5600	1215	1215K
70	130	31,0		1,50	44,200	17,800	4700	5600	2215	2215K
	160	37,0		2,10	79,300	29,900	3800	4500	1315	1315K
	160	55,0		2,10	124,000	43,000	3500	4200	2315	2315K
80	140	26,0		2,00	39,700	16,800	4500	5300	1216	1216K
00	140	33,0		2,00	48,800	20,000	4500	5300	2216	2216K
85	150	28.0		2,00	48,800	20,300	4000	4700	1217	1217K
00	180	41,0		3,00	97,500	37,600	3300	4000	1317	1317K
	180	60,0		3,00	140,000	51,100	3200	3800	2317	2317K
90	160	30,0		2,00	57,200	23,300	3800	4500	1218	1218K
50	160	40,0		2,00	70,200	28,700	3800	4500	2218	2218K
	190	64,0		3,00	153,000	57,300	3000	3500	2318	2318K
95	170	32,0		2,10	63,700	27,100	3500	4200	1219	1219K
00	170	43,0		2,10	83,200	34,100	3500	4200	2219	2219K
	200	45,0	48,0	3,00	133,000	51,100	3000	3500	1319	1319K
	200	67,0	70,0	3,00	165,000	64,300	2800	3300	2319	2319K
100	180	34,0		2,10	68,900	29,300	3300	4000	1220	1220K
100	180	46,0		2,10	97,500	40,600	3300	4000	2220	2220K
	215	47,0	52,0	3,00	143,000	58,400	2800	3300	1320	1320K
	215	73,0	32,0	3,00	190,000	77,900	2700	3200	2320	2320K
110	200	38,0		2,10	88,400	38,300	3000	3500	1222	1222K
10	200	53,0		2,10	124,000	52,100	3000	3500	2222	2222K
	240	50,0	55,0	3,00	163,000	70,800	2700	3200	1322	1322K
	240	80,0	55,0	3,00	216,000	94,400	2500	3000	2322	2322K
20	215	42,0	45,0	2,10	119,000	52,100	2800	3300	1224	20221\
20	260	55,0	62,0	3,00	196,000	90,900	2500	3000	1324	
130	230	46,0	48,0	3,00	126,000	59,600	2700	3200	1226	
140	250	50,0	54,0	3,00	159,000	72,200	2500	3000	1228	
150	270	54,0	56,0	3,00	171,000	85,800	2400	2800	1230	
			, .							



D _a Makc 111 111 111 116 138 121 121 148 148 130 130 140 166 166 150 150 176 158 158 186	1,5 1,5 1,5 1,5 2,0 1,5 1,5 2,0 2,0 2,0 2,0 2,0 2,0 2,5 2,5 2,0 2,0	КГ 1,1500 1,4600 1,5200 3,9000 1,3600 1,6200 3,5600 4,7200 1,6700 2,0100 2,0700 4,9800 6,7100 2,5200 3,2000 7,9600	1,1300 1,4300 1,4300 1,5800 3,5100 4,6100 1,6400 1,9700 2,0400 4,9100 6,5500 2,4800 3,1300	Н213 Н313 Н313 Н315 Н315 Н315 Н315 Н216 Н316 Н217 Н317 Н2317 Н218	0,170 0,280 0,270 0,380 0,180 0,250 0,220 0,380 0,160 0,250 0,170 0,220 0,370	3,700 2,200 2,400 1,700 3,600 2,500 2,800 1,700 3,900 2,500 2,900 1,700	5,700 3,500 3,700 2,600 5,600 3,900 4,400 2,600 6,100 3,900 5,700 4,500	3,900 2,300 2,500 1,800 3,800 2,600 3,000 1,700 4,100 2,600 3,900
111 116 138 121 121 148 148 130 130 140 166 166 150 176 158 158	1,5 1,5 2,0 1,5 1,5 2,0 2,0 2,0 2,0 2,0 2,0 2,5 2,5 2,5 2,0 2,0 2,5 5	1,1500 1,4600 1,5200 3,9000 1,3600 1,6200 3,5600 4,7200 1,6700 2,0100 2,0700 4,9800 6,7100 2,5200 3,2000	1,4300 1,3400 1,5800 3,5100 4,6100 1,6400 1,9700 2,0400 4,9100 6,5500 2,4800	H215 H315 H315 H315 H2315 H216 H316 H217 H317 H317	0,280 0,270 0,380 0,180 0,250 0,220 0,380 0,160 0,250 0,170 0,220 0,370	2,200 2,400 1,700 3,600 2,500 2,800 1,700 3,900 2,500 3,700 2,900	3,500 3,700 2,600 5,600 3,900 4,400 2,600 6,100 3,900 5,700 4,500	2,300 2,500 1,800 3,800 2,600 3,000 1,700 4,100 2,600 3,900
111 116 138 121 121 148 148 130 130 140 166 166 150 176 158 158	1,5 1,5 2,0 1,5 1,5 2,0 2,0 2,0 2,0 2,0 2,0 2,5 2,5 2,5 2,0 2,0 2,5 5	1,4600 1,5200 3,9000 1,3600 1,6200 3,5600 4,7200 1,6700 2,0100 2,0700 4,9800 6,7100 2,5200 3,2000	1,4300 1,3400 1,5800 3,5100 4,6100 1,6400 1,9700 2,0400 4,9100 6,5500 2,4800	H215 H315 H315 H315 H2315 H216 H316 H217 H317 H317	0,280 0,270 0,380 0,180 0,250 0,220 0,380 0,160 0,250 0,170 0,220 0,370	2,200 2,400 1,700 3,600 2,500 2,800 1,700 3,900 2,500 3,700 2,900	3,500 3,700 2,600 5,600 3,900 4,400 2,600 6,100 3,900 5,700 4,500	2,300 2,500 1,800 3,800 2,600 3,000 1,700 4,100 2,600 3,900
111 116 138 121 121 148 148 130 130 140 166 166 150 176 158 158	1,5 1,5 2,0 1,5 1,5 2,0 2,0 2,0 2,0 2,0 2,0 2,5 2,5 2,5 2,0 2,0 2,5 5	1,4600 1,5200 3,9000 1,3600 1,6200 3,5600 4,7200 1,6700 2,0100 2,0700 4,9800 6,7100 2,5200 3,2000	1,4300 1,3400 1,5800 3,5100 4,6100 1,6400 1,9700 2,0400 4,9100 6,5500 2,4800	H215 H315 H315 H315 H2315 H216 H316 H217 H317 H317	0,280 0,270 0,380 0,180 0,250 0,220 0,380 0,160 0,250 0,170 0,220 0,370	2,200 2,400 1,700 3,600 2,500 2,800 1,700 3,900 2,500 3,700 2,900	3,500 3,700 2,600 5,600 3,900 4,400 2,600 6,100 3,900 5,700 4,500	2,300 2,500 1,800 3,800 2,600 3,000 1,700 4,100 2,600 3,900
116 138 121 121 148 148 130 130 140 166 166 150 150 176	1,5 2,0 1,5 1,5 2,0 2,0 2,0 2,0 2,0 2,0 2,5 2,5 2,5 2,0 2,0 2,0 2,5 2,5	1,5200 3,9000 1,3600 1,6200 3,5600 4,7200 1,6700 2,0100 2,0700 4,9800 6,7100 2,5200 3,2000	1,3400 1,5800 3,5100 4,6100 1,6400 1,9700 2,0400 4,9100 6,5500 2,4800	H215 H315 H315 H2315 H216 H316 H217 H317 H317	0,270 0,380 0,180 0,250 0,220 0,380 0,160 0,250 0,170 0,220 0,370	2,400 1,700 3,600 2,500 2,800 1,700 3,900 2,500 3,700 2,900	3,700 2,600 5,600 3,900 4,400 2,600 6,100 3,900 5,700 4,500	2,500 1,800 3,800 2,600 3,000 1,700 4,100 2,600 3,900
138 121 121 148 148 130 130 140 166 166 150 176 158 158	2,0 1,5 1,5 2,0 2,0 2,0 2,0 2,0 2,5 2,5 2,5 2,0 2,0 2,0	3,9000 1,3600 1,6200 3,5600 4,7200 1,6700 2,0100 2,0700 4,9800 6,7100 2,5200 3,2000	1,5800 3,5100 4,6100 1,6400 1,9700 2,0400 4,9100 6,5500 2,4800	H315 H315 H2315 H216 H316 H217 H317 H317	0,380 0,180 0,250 0,220 0,380 0,160 0,250 0,170 0,220 0,370	1,700 3,600 2,500 2,800 1,700 3,900 2,500 3,700 2,900	2,600 5,600 3,900 4,400 2,600 6,100 3,900 5,700 4,500	1,800 3,800 2,600 3,000 1,700 4,100 2,600 3,900
121 121 148 148 130 130 140 166 166 150 150 176	1,5 2,0 2,0 2,0 2,0 2,0 2,5 2,5 2,0 2,0 2,5	1,6200 3,5600 4,7200 1,6700 2,0100 2,0700 4,9800 6,7100 2,5200 3,2000	1,5800 3,5100 4,6100 1,6400 1,9700 2,0400 4,9100 6,5500 2,4800	H315 H315 H2315 H216 H316 H217 H317 H317	0,250 0,220 0,380 0,160 0,250 0,170 0,220 0,370	2,500 2,800 1,700 3,900 2,500 3,700 2,900	3,900 4,400 2,600 6,100 3,900 5,700 4,500	2,600 3,000 1,700 4,100 2,600 3,900
148 148 130 130 140 166 166 150 150 176 158 158	2,0 2,0 2,0 2,0 2,0 2,5 2,5 2,0 2,0 2,5	3,5600 4,7200 1,6700 2,0100 2,0700 4,9800 6,7100 2,5200 3,2000	3,5100 4,6100 1,6400 1,9700 2,0400 4,9100 6,5500 2,4800	H315 H2315 H216 H316 H217 H317 H2317	0,220 0,380 0,160 0,250 0,170 0,220 0,370	2,800 1,700 3,900 2,500 3,700 2,900	4,400 2,600 6,100 3,900 5,700 4,500	3,000 1,700 4,100 2,600 3,900
148 130 130 140 166 166 150 150 176 158 158	2,0 2,0 2,0 2,0 2,5 2,5 2,0 2,0 2,5	4,7200 1,6700 2,0100 2,0700 4,9800 6,7100 2,5200 3,2000	4,6100 1,6400 1,9700 2,0400 4,9100 6,5500 2,4800	H2315 H216 H316 H217 H317 H2317	0,380 0,160 0,250 0,170 0,220 0,370	1,700 3,900 2,500 3,700 2,900	2,600 6,100 3,900 5,700 4,500	1,700 4,100 2,600 3,900
130 130 140 166 166 150 150 176 158 158	2,0 2,0 2,0 2,5 2,5 2,0 2,0 2,5	1,6700 2,0100 2,0700 4,9800 6,7100 2,5200 3,2000	1,6400 1,9700 2,0400 4,9100 6,5500 2,4800	H216 H316 H217 H317 H2317	0,160 0,250 0,170 0,220 0,370	3,900 2,500 3,700 2,900	6,100 3,900 5,700 4,500	4,100 2,600 3,900
130 140 166 166 150 150 176 158 158	2,0 2,0 2,5 2,5 2,0 2,0 2,5	2,0100 2,0700 4,9800 6,7100 2,5200 3,2000	1,9700 2,0400 4,9100 6,5500 2,4800	H316 H217 H317 H2317	0,250 0,170 0,220 0,370	2,500 3,700 2,900	3,900 5,700 4,500	2,600 3,900
140 166 166 150 150 176 158 158	2,0 2,5 2,5 2,0 2,0 2,0 2,5	2,0700 4,9800 6,7100 2,5200 3,2000	2,0400 4,9100 6,5500 2,4800	H217 H317 H2317	0,170 0,220 0,370	3,700 2,900	5,700 4,500	3,900
166 166 150 150 176 158 158	2,5 2,5 2,0 2,0 2,5	4,9800 6,7100 2,5200 3,2000	4,9100 6,5500 2,4800	H317 H2317	0,220 0,370	2,900	4,500	
166 150 150 176 158 158	2,5 2,0 2,0 2,5	6,7100 2,5200 3,2000	6,5500 2,4800	H2317	0,370			
150 150 176 158 158	2,0 2,0 2,5	2,5200 3,2000	2,4800			1 700		3,000
150 176 158 158	2,0 2,5	3,2000		H218			2,700	1,800
176 158 158	2,5		3,1300		0,170	3,800	5,800	3,900
158 158		7 0600		H318	0,270	2,400	3,600	2,500
158	2 0		7,7700	H2318	0,380	1,700	2,600	1,800
		3,1000	3,0500	H219	0,170	3,700	5,700	3,900
106	2,0	3,9500	3,8500	H319	0,270	2,400	3,600	2,500
	2,5	6,6900	6,5900	H319	0,230	2,800	4,300	2,900
186	2,5	9,2100	8,9900	H2319	0,380	1,700	2,600	1,800
168	2,0	3,7000	3,6400	H220	0,170	3,600	5,600	3,800
	2,0		4,6100					2,500
								2,800
								1,700
								3,800
								2,400
	2,5							3,000
			16,9000	H2322				1,800
								3,400
	2,5							2,800
								3,400
								3,300
230	2,3	13,8000			0,190	3,200	5,000	3,400
	168 201 201 188 188 226 226 203 246 216 236 256	168 2,0 201 2,5 201 2,5 188 2,0 188 2,0 226 2,5 226 2,5 203 2,0 246 2,5 216 2,5 236 2,5	168 2,0 4,7200 201 2,5 8,3000 201 2,5 11,7000 188 2,0 5,1500 188 2,0 6,8400 226 2,5 11,8000 226 2,5 17,3000 203 2,0 6,7500 246 2,5 15,5000 216 2,5 8,3000 236 2,5 10,9000	168 2,0 4,7200 4,6100 201 2,5 8,3000 8,1900 201 2,5 11,7000 11,4000 188 2,0 5,1500 5,0700 188 2,0 6,8400 6,6800 226 2,5 11,8000 11,7000 226 2,5 17,3000 16,9000 203 2,0 6,7500 246 2,5 15,5000 216 2,5 8,3000 236 2,5 10,9000	168 2,0 4,7200 4,6100 H320 201 2,5 8,3000 8,1900 H320 201 2,5 11,7000 11,4000 H2320 188 2,0 5,1500 5,0700 H222 188 2,0 6,8400 6,6800 H322 226 2,5 11,8000 11,7000 H322 226 2,5 17,3000 16,9000 H2322 203 2,0 6,7500 246 2,5 15,5000 216 2,5 8,3000 236 2,5 10,9000	168 2,0 4,7200 4,6100 H320 0,270 201 2,5 8,3000 8,1900 H320 0,240 201 2,5 11,7000 11,4000 H2320 0,380 188 2,0 5,1500 5,0700 H222 0,170 188 2,0 6,8400 6,6800 H322 0,280 226 2,5 11,8000 11,7000 H322 0,220 226 2,5 17,3000 16,9000 H2322 0,370 203 2,0 6,7500 0,190 246 2,5 15,5000 0,240 216 2,5 8,3000 0,190 236 2,5 10,9000 0,200	168 2,0 4,7200 4,6100 H320 0,270 2,400 201 2,5 8,3000 8,1900 H320 0,240 2,700 201 2,5 11,7000 11,4000 H2320 0,380 1,700 188 2,0 5,1500 5,0700 H222 0,170 3,600 188 2,0 6,8400 6,6800 H322 0,280 2,300 226 2,5 11,8000 11,7000 H322 0,220 2,800 226 2,5 17,3000 16,9000 H2322 0,370 1,700 203 2,0 6,7500 0,190 3,300 246 2,5 15,5000 0,240 2,700 216 2,5 8,3000 0,190 3,300 236 2,5 10,9000 0,200 3,100	168 2,0 4,7200 4,6100 H320 0,270 2,400 3,600 201 2,5 8,3000 8,1900 H320 0,240 2,700 4,100 201 2,5 11,7000 11,4000 H2320 0,380 1,700 2,600 188 2,0 5,1500 5,0700 H222 0,170 3,600 5,600 188 2,0 6,8400 6,6800 H322 0,280 2,300 3,500 226 2,5 11,8000 11,7000 H322 0,220 2,800 4,400 226 2,5 17,3000 16,9000 H2322 0,370 1,700 2,700 203 2,0 6,7500 0,190 3,300 5,100 246 2,5 15,5000 0,240 2,700 4,100 216 2,5 8,3000 0,190 3,300 5,000 236 2,5 10,9000 0,200 3,100 4,800

Однорядные роликовые подшипники с короткими цилиндрическими роликами

Подшипники являются разъемниными и выпускаются в нескольких конструктивных исполнениях. Исполнение NU имеет цилиндрические ролики, которые направляются бортами на наружном кольце, исполнение N бортами на внутреннем кольце. Обе исполнения позволяют взаимное осевое смещение колец в обеих направлениях.

Исполнение NJ имеет два направляющих борта на наружном кольце и один на внутреннем кольце – это позволяет воспринимать некоторые осевые усилия в одном направлении.

Исполнение NUP имеет, по сравнению с исполнением NJ, еще плоское упорное кольцо, образующее второй опорный борт на внутреннем кольце – это позволяет воспринимать ограниченные осевые усилия в обеих направлениях. Осевое направление тел качения в обеих направлениях возможно достичь путем применения фасонных упорных колец НJ для подшипников с исполнением NJ и в одном направлении для подшипников в исполнении NU.

Однорядные роликовые подшипники с короткими цилиндрическими роликами имеют по сравнению с однорядными шариковыми подшипниками с такими-же размерами выше грузоподъемность и они удобны для подшипниковых узлов с большей радиальной нагрузкой, высокой частотой вращения и в тех случаях, когда требуется неподвижная установка обеих колец.

Основные размеры

Основные размеры подшипников соответствуют ISO 15 и приведены по подшипникам в разделе таблиц настоящей публикации.

Обозначение

Обозначения подшипников в основном исполнении приведены в разделе таблиц в настоящей публикации.

Отличия от основного исполнения обозначаются с помощью дополнительных знаков, которые указаны в разделе 2.2

Сепаратор

Подшипники имеют в основном исполнении как правило сепаратор такой, как указывается в таблице. Знак материала и исполнение сепаратора по подшипникам с листоштампованным стальным сепаратором и по подшипникам NU29 и NUP29 с массивным сепаратором не указывается.

Тип подшипника	Подшипники с листоштампо-	Подшипники с массивным	Подшипники с массивным
	ванным стальным сепарато-	пластмассовым сепарто-	латунным или стальным
	ром	ром с канавкой для ввода роликов	сепаратором
	Размер подшипника		
NU/NUP29	-	-	/800 /1800
NU10	-	-	80 80
NU/NJ/NUP/N2	05 28	-	48
NU/NJ/NUP/N2E	09, 15	04 24	22 40
NU/NJ/NUP22	05 07, 10, 11, 13, 14, 19	-	36, 80
NU/NJ/NUP22E	09, 15, 17	40 20	22 30
NU/NJ/NUP/N3	05 24	-	26 30
NU/NJ/NUP/N3E	-	04 17	18 30
NU/NJ/NUP23	07, 12, 13, 15	-	-
NU/NJ/NUP23E	09	04 17	07, 08, 10, 14
			18 30
NU/NJ/NUP/N4	06 12, 14 16	-	13, 17 24

Точность

Подшипники стандартно выпускаются по нормальному классу точности РО, который не обозначается. Поставляются тоже подшипники для более ответственных подшипниковых узлов по повышенным классам точности Р6, Р5 и Р4.

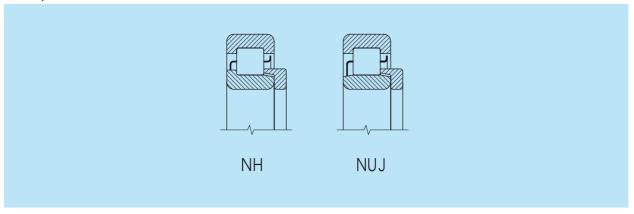
Предельные значения отклонений по точности размеров и хода указаны в таблицах 10 и 11 и совпадают с данными стандарта ISO 199 и ISO 492.

Радиальный зазор

Стандартно выпускаемые подшипники имеют нормальный радиальный зазор, который не обозначается. Для специальных случаев подшипниковых узлов поставляются подшипники со сниженным радиальным зазором С2 или с увеличенным радиальным зазором С3, С4 и С5. Величины радиальных зазоров совпадают с стандартом ISO 5753 и приведены в таблице 24.

Уровень вибраций

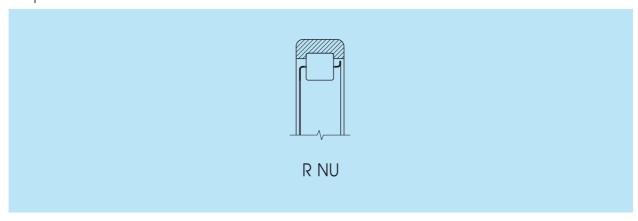
Стандартно выпускаемые однорядные роликовые подшипники с короткими цилиндрическими роликами имеют нормальный уровень вибраций, контролируемый заводом-изготовителем. Подшипники по классам точности Р5 и Р4 имеют уровень вибраций С6. Для специальных вариантов подшипниковых узлов выпускаются подшипники со сниженным уровнем вибраций С6.


Подшипники с фасонными упорными кольцами

Фасонные упорные кольца типа HJ10, HJ2, HJ2E, HJ3, HJ3E и HJ4 возможно использовать для подшипников в конструктивном исполнении NJ и NU.

Примеры обозначения подшипников:

NJ10 + HJ10 = NH10 NJ2 + HJ2 = NH2 NJ3 + HJ3 = NH3 NJ4 + HJ4 = NH4 NU10 + HJ10 = NUJ10 NU2 + HJ2 = NUJ2 NU3 + HJ3 = NUJ3 NU4 + HJ4 = NUJ4


Изображение некоторых основных конструктивных исполнений и комбинаций находится в разделе таблиц настоящей публикации.

Подшипники без внутреннего кольца

Для подшипниковых узлов, по которым ограничено пространство для размещения подшипников, поставляются однорядные роликовые подшипники с цилиндрическими роликами без внутреннего кольца, обозначаемые RNU. Дорожку качения внутреннего подшипникового кольца образует непосредственно закаленная и прошлифованная поверхность вала.

Посадка размера на валу как правило выполняется "g6" для нормального радиального зазора, "f6" для повышенного радиального зазора и "h5" для пониженного радиального зазора. Отклонения круглости и цилиндричности "дорожки качения" в таком случае вала не должны быть больше, чем отклонения для степени точности IT3. Шероховатость этой поверхности должна быть $R_a = 0.2$ и для менее ответственных узлов $R_a = 0.4$.

Значения основной грузоподъемности C_r и C_{or} , которые приведены в разделе таблиц, относятся к подшипникам RNU при предположении, что твердость поверхности вала будет в пределах 59 ... 65 HRC. С понижающимся значением твердости уменьшаются также величины грузоподъемности C_r , которую нужно корректировать путем перемножения на коэффициент f_h по следующей таблице. Минимальная глубина закалки вала после прошлифования зависит от диаметра цилиндрических роликов и размера нагрузки и должна составлять 1 ... 3 мм.

Твердость HRC	58	56	54	51	48	45	40	35	30
Коэффициент f _ь	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,25	0,2
"									

Наклон

Взаимный наклон колец однорядных роликовых подшипников с цилиндрическими роликами очень малый. Допустимые значения наклона указаны в таблице.

Тип подшипника	Нагрузка небольшая (F _r <0,1C _{or})	большая (F _r ≧0,1C _{or})
NU10, NU2, NU3, NU4 NU29, NU22. NU23	2' 3' 1' 3'	5' 7' 3' 4'
Исполнения NJ, NUP, N ¹⁾ всех размерных групп	1' 2'	3' 4'
1) Меньше величина из пары цифр относится к подшипникам	ояда ширин 2 и выше	

Радиальная эквивалентная динамическая нагрузка

$$P_r = F_r$$
 [KH]

Осевая динамическая грузоподъемность

Подшипники с бортами по обеим сторонам могут, кроме радиальной нагрузки, воспринимать также ограниченную осевую нагрузку. С учетом того, что допустимая нагрузка подшипников в осевом направлении зависит от многих факторов, которые невозможно охватить простым расчетом, то следующие соотношения несут информативный характер.

Осевая грузоподъемность в таком случае не лимитируется усталостью материала, а несущей способностью смазочной пленки в месте контакта между торцом ролика и направляющим бортом, условиями смазки, рабочей температурой и возможностью охлаждения подшипника. При стандартных условиях работы, если разница температуры подшипника и окружающей среды не превышает 60°С, при некотором теплопереходе (0,5 м.Вт.мм⁻².°С⁻¹) при соотношении вязкости \approx 1,5 (раздел 4.2.1) возможно расчитать максимальную допустимую нагрузку с достаточной точностью по формуле:

$$F_{a \text{ max}} = \frac{0.5 \text{ C}_{or} \cdot 10^4}{\text{n (d + D)}} - 0.05 \text{ F}_{r}$$
 [kH]

- в случае смазки жидким маслом

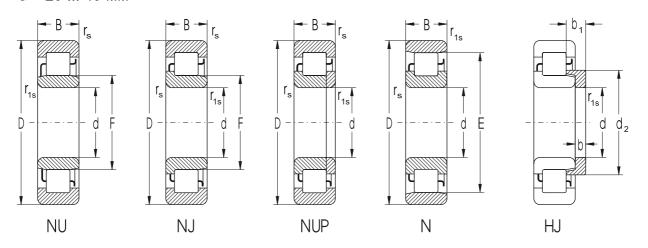
$$F_{a \text{ max}} = \frac{0.35 \text{ C}_{or} \cdot 10^4}{\text{n (d + D)}} - 0.03 \text{ F}_{r}$$
 [kH]

- в случае смазки пластической смазкой

Famako	– максимальная допустимая осевая нагрузка	[ĸH]
Cor	– радиальная статическая грузоподъемность	[ĸH]
F,	– радиальная нагрузка подшипника	[кН]
n	– частота вращения	[мин ⁻¹]
d	 диаметр отверстия подшипника 	[MM]
D	– наружный диаметр подшипника	[MM]

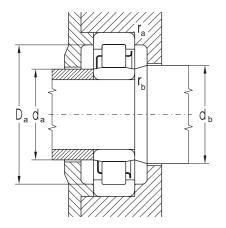
Величины $F_{a \text{ макс}}$, расчитанные по указанным формулам, действительны при предположении воздействия постоянного осевого усилия. При прерывистой или ударной нагрузке возможно допустимую осевую нагрузку увеличить вдвое-втрое с учетом расчитанной величины.

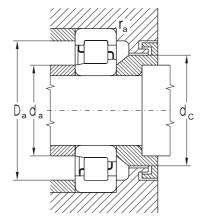
Для надежной функции подшипника важно, чтобы $Fa/Fr \leq 0,4$.

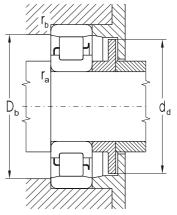

Расчеты и порядок решения специальных случаев рекомендуем проконсультировать с поставщиком.

Радиальная эквивалентная статическая нагрузка

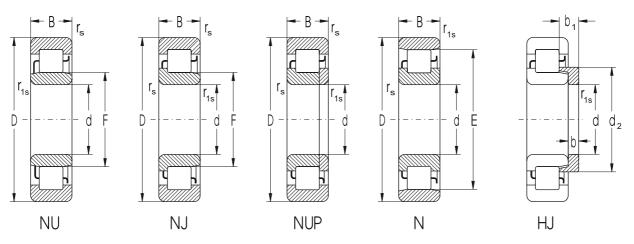
$$P_{cr} = F_{r}$$
 [KH]



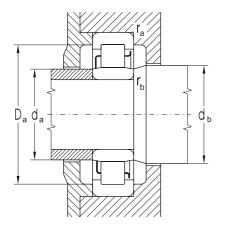

Однорядные роликовые подшипники с короткими цилиндрическими роликами $d=20 \dots 40 \text{ мм}$

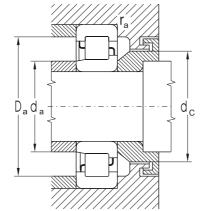


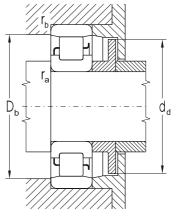
Раз	мерь	I									Обозначени	е подшипника			\/=os
d	D	В	r _s мин	r _{1s} мин	F	Е	d ₂ макс	b	b ₁	S ¹⁾	NU	NJ	NUP	N	Упор. к. НЈ
ИМ															
20	47	14,0	1,00	0,6	27,0	40,0	30.0	3	6,75	1,4	NU204	NJ204	NUP204	N204	HJ204
25	52	15,0	1,00	0.6	32,0	45,0	35,0	3	7,25	1,5	NU205	NJ205	NUP205	N205	HJ205
	52	15,0	1,00	0,6	31,5	-,-	34,9	3	6,00	1,4	NU205E	NJ205E	NUP205E		HJ205E
	52	15,0	1,00	0,6	31,5	46,5	34,9	3	6,00	1,4	NU205ETNG	NJ205ETNG	NUP205ETNG	N205ETNG	
	52	18,0	1,00	0,6	32,0					1,6	NU2205	NJ2205	NUP2205		
	62	17,0	1,10	1,1	35,0	53,0	39,3	4	8,00	1,4	NU305	NJ305	NUP305	N305	HJ305
	62	17,0	1,10	1,1	34,0		38,3	4	7,00	1,4	NU305EMAS	NJ305EMAS	NUP305EMAS		HJ305E
	62	17,0	1,10	1,1	34,0	54,0	38,3	4	7,00	1,4	NU305ETNG	NJ305ETNG	NUP305ETNG	N305ETNG	HJ305E
	80	21,0	1,50	1,5	38,8					1,4	NU405	NJ405			
30	62	16,0	1,00	0,6	38,5	53,5	42,2	4	8,25	1,5	NU206	NJ206	NUP206	N206	HJ206
	62	16,0	1,00	0,6	37,5	55,5	41,4	4	7,00	1,4	NU206ETNG	NJ206ETNG	NUP206ETNG	N206ETNG	HJ206
	62	20,0	1,00	0,6	38,5					1,6	NU2206	NJ2206	NUP2206		
	72	19,0	1,10	1,1	42,0	62,0	46,6	5	9,50	1,4	NU306	NJ306	NUP306	N306	HJ306
	72	19,0	1,10	1,1	40,5		45,1	5	8,50	1,4	NU306E	NJ306E	NUP306E		HJ306E
	72	19,0	1,10	1,1	40,5	62,5	45,1	5	8,50	1,4	NU306ETNG	NJ306ETNG	NUP306ETNG	N306ETNG	HJ306E
	90	23,0	1,50	1,5	45,0		51,4	7	11,50	1,5	NU406	NJ406	NUP406		HJ406
2	65	21,0	1,00	0,6	38,5					1,6	NU22/32ETNG				
35	72	17,0	1,10	0,6	43,8	61,8	48,1	4	8,00	1,5	NU207	NJ207	NUP207	N207	HJ207
	72	17,0	1,10	0,6	44,0		48,3	4	7,00	1,4	NU207E	NJ207E	NUP207E		HJ207
	72	17,0	1,10	0,6	44,0	64,0	48,3	4	7,00	1,4	NU207ETNG	NJ207ETNG	NUP207ETNG	N207ETNG	HJ207E
	72	23,0	1,10	0,6	43,8					1,6	NU2207	NJ2207	NUP2207		
	72	23,0	1,10	0,6	44,0	00.0	54.0	•	11.00	1,6	NU2207ETNG	NJ2207ETNG	NUP2207ETNO		11100=
	80	21,0	1,50	1,1	46,2	68,2	51,2	6	11,00	1,4	NU307	NJ307	NUP307	N307	HJ307
	80	21,0	1,50	1,1	46,2		51,2	6	9,50	1,4	NU307E	NJ307E	NUP307E	,	HJ307E
	80	31,0	1,50	1,1	46,2	00.0	E0.0	0	10.00	2,7	NU2307EMAS	NJ2307EMAS	NUP2307EMAS		111407
0	100 80	25,0 18,0	1,50 1,10	1,5 1,1	53,0	83,0 70,0	59,9 54,6	<u>8</u> 5	13,00 9.00	1,5 1,5	NU407 NU208	NJ407 NJ208	NUP407 NUP208	N407 N208	HJ407 HJ208
łU	80	18.0	1,10	1,1	50,0 49,5	70,0	54,1	5	8,50	1,5	NU208E	NJ208E	NUP208E	NZU0	HJ208E
	80	23.0	1,10	1,1	50,0		34,1	5	0,00	1,6	NU2208	NJ2208	NUP2208		ПЈДОО
	80	30,16	1,00	1,5	49,3					3,0	NU5208M	1402200	NOFZZUU		
	90	23,0	1,50	1,5	53,5	77,5	59,0	7	12,50	1,4	NU308	NJ308	NUP308	N308	HJ308
	90	23,0	1,50	1,5	52,0	77,5	57,7	7	11,00	1,4	NU308E	NJ308E	NUP308E	11000	HJ308E
	90	23,0	1,50	1,5	52,0	80,0	57,7	7	11,00	1,4	NU308ETNG	NJ308ETNG	NUP308ETNG	N308ETNG	
	90	33,0	1,50	1,5	52,0	00,0	0,,,	,	,00	2,9	NU2308EMAS	NJ2308EMAS	NUP2308EMA		
	110	27,0	2,00	2,0	58,0	92,0	65,8	8	13,00	1,5	NU408	NJ408	NUP408	N408	HJ408
1) Д		27,0				,	ŕ				NU4U8	NJ408	NUP4U8	N4U8	HJ40



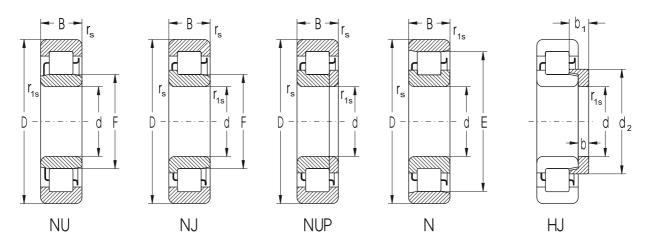
	грузоподъемность ская статическая С _{ог}	Предельная ч вращения для пластической	т смазки	Прис	оедин	ительн	ые ра	змеры						Macca	
<u>'</u>	V.	смазкой	маслом	d	d _а мин	d _а макс	d _b мин	d _с мин	d _d макс	D _а макс	D _b мин	r _а макс	r _ь макс	Подш.	Упор. к
кН		мин ⁻¹		ММ										КГ	
10.000	10.000	1.1000	17000	00	05	05.5	00	00	00	40	40	1.0	0.0	0.1100	0.01
13,900 15,800	10,200 12,600	14000 12600	17000 15000	20	25 30	25,5 30,5	29 34	32 37	39 43	42 47	42 47	1,0 1,0	0,6	0,1100	0,01
29,300	25,600	12600	15000	20	30	30,5	34	37		47	-	1,0		0,1300	0,02
		12600	15000		30	30	34	37	- 44	47	47	1,0	0,6	0,1280	0,02
29,300 22,400	25,600 19,600	12600	15000		30	30.5		37		47		1,0	0,6	0,1280	0,02
							34		-		-		0,6	0,1600	0.00
27,600	21,500	10000	12000		31	33	37	40	51	55	55	1,0	1,0	0,2400	0,03
43,000	36,200	10000	12000		31	32	37	40	-	55	-	1,0	1,0	0,2550	0,03
43,000	36,200	10000	12000		31	32	36	39	52	55	55	1,0	1,0	0,2370	0,03
43,800	34,100	8400	10000	00	32	38	39	40	-	73	-	1,0	1,0	0,5650	0.00
21,500	17,800	10600	12600	30	35	37	40	44	52	57	56	1,0	0,6	0,2000	0,03
39,100	35,500	10600	12600		35	37	40	43	54	57	57	1,0	0,6	0,1980	0,03
31,600	29,300	10600	12600		35	37	40	44	-	57	-	1,0	0,6	0,2600	0.04
36,200	31,000	8900	10600		36	39	44	48	60	65	64	1,0	1,0	0,3600	0,04
53,100	46,400	8400	10000		36	37,5	43	47	-	65	-	1,0	1,0	0,3570	0,04
53,100	46,400	8400	10000		36	37,5	43	47	60	65	64	1,0	1,0	0,3570	0,04
59,600	48,200	7100	8400	00	39	41	47	53	-	80	-	1,5	1,5	0,7500	0,08
51,100	50,100	10000	12000	32	35	37	39	43	-	60	-	1,0	1,0	0,3090	0.04
31,600	27,100	9400	11000	35	42	42	46	50	60	65	64	1,0	0,6	0,2900	0,04
51,100	48,200	8900	10600		42	42	46	50	-	65	-	1,0	0,6	0,2920	0,04
51,100	48,200	8900	10600		42	42	46	50	62	65	65	1,0	0,6	0,2920	0,04
48,200	47,300	9400	11000		42	42	46	50	-	65	-	1,0	0,6	0,4000	
64,300	64,300	8900	10600		42	42	46	50	-	65	-	1,0	0,6	0,3850	0.00
43,000	36,200	7900	9400		42	44	48	53	66	71	71	1,5	1,0	0,4800	0,06
66,800	61,900	7500	8900		42	44	48	53	-	71	-	1,5	1,0	0,4660	0,06
92,600	92,600	7100	8400		42	44	48	53	-	71	-	1,5	1,0	0,7510	0.40
75,000	64,300	6300	7500	40	44	52	55	62	81	90	86	1,5	1,5	1,0000	0,13
42,200	37,600	7900	9400	40	47	48	52	56	68	73	72	1,0	1,0	0,3700	0,05
54,100	50,100	7900	9400		47	47	51	56	-	73	-	1,0	1,0	0,3800	0,05
57,300	56,200	7900	9400		47	48	52	56	-	73	-	1,0	1,0	0,7380	
57,000	98,100	7500	8900		48	-	51,5		-	72	-	1,5	1,5	0,7380	
55,200	48,200	7100	8400		47	51	55	61	75	81	81	1,5	1,5	0,6600	0,09
84,100	77,900	6700	7900		47	50	54	60	-	81	-	1,5	1,5	0,6700	0,08
84,100	77,900	6700	7900		47	50	54	60	77	81	81	1,5	1,5	0,8290	0,08
119,000	123,000	6300	7500		47	50	54	60	-	81	-	1,5	1,5	1,0000	
92,600	79,400	5600	6700		50	55	60	68	90	97	95	2,0	2,0	1,3000	0,14

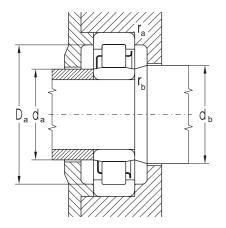

Однорядные роликовые подшипники с короткими цилиндрическими роликами $d=45 \dots 60 \ \text{мм}$

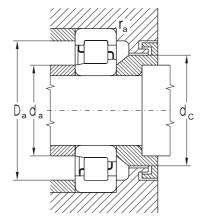


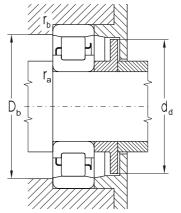


	D	В	r _s мин	r _{1s} мин	F	Е	d ₂ макс	b	b ₁	S ¹⁾	NU	NJ	NUP	N	Упор. к. НЈ
М															
5	85	19,00	1,1	1,1	55,00	75.0	59,6	5	9,50	1,5	NU209	NJ209	NUP209	N209	HJ209
	85	19,00	1,1	1,1	54,50	, 0,0	59,1	5	8,50	1,4	NU209E	NJ209E	NUP209E		HJ209E
	85	19,00	1,1	1,1	54,50	76,5	59,1	5	8,50	1,4	NU209ETNG	NJ209ETNG	NUP209ETNG	N209ETNG	HJ209E
	85	23,00	1,1	1,1	54,50	-,-	,		-,	1,6	NU2209E	NJ2209E	NUP2209E		
	85	23,00	1,1	1,1	54,50					1,6	NU2209ETNG	NJ2209ETNG	NUP2209ETNG		
	85	30,16	1,0	1,5	55,52					4,0	NU5209M				
	100	25,00	1,5	1,5	58,50	86,5	65,0	7	12,50	1,4	NU309	NJ309	NUP309	N309	HJ309
	100	25,00	1,5	1,5	58,50		64,6	7	11,50	1,4	NU309E	NJ309E	NUP309E		HJ309E
	100	36,00	1,5	1,5	58,50					2,9	NU2309E	NJ2309E	NUP2309E		
	120	29,00	2,0	2,0	64,50	100,5	72,8	8	13,50	1,5	NU409	NJ409	NUP409	N409	HJ409
)	90	20,00	1,1	1,1	59,50		64,6	5	9,00	1,6	NU210E	NJ210E	NUP210E		HJ210E
	90	23,00	1,1	1,1	60,40					1,6	NU2210	NJ2210	NUP2210		
	90	23,00	1,1	1,1	59,50					1,6	NU2210E	NJ2210E	NUP2210E		
	90	30,16	1,0	1,5	60,46					4,5	NU5210M				
	110	27,00	2,0	2,0	65,00	95,0	71,9	8	14,00	1,5	NU310	NJ310	NUP310	N310	HJ310
	110	27,00	2,0	2,0	65,00	97,0	71,4	8	13,00	1,5	NU310ETNG	NJ310ETNG	NUP310ETNG	N310ETNG	HJ310E
	110	40,00	2,0	2,0	65,00					3,0	NU2310	NJ2310	NUP2310		
	110	40,00	2,0	2,0	65,00					3,0	NU2310EMAS	NJ2310EMAS	NUP2310EMAS		
_	130	31,00	2,1	2,1	70,80	110,8	80,0	9	14,50	2,0	NU410	NJ410	NUP410	N410	HJ410
5	100	21,00	1,5	1,1	66,50	88,5	- '	6	11,00	1,6	NU211	NJ211	NUP211	N211	HJ211
	100	21,00	1,5	1,1	66,00		71,0	ь	9,50	1,6	NU211E	NJ211E	NUP211E		HJ211E
	100	25,00 33,34	1,5 1,5	1,1 2,1	66,50 66,90					1,6 4,5	NU2211 NU5211M	NJ2211	NUP2211		
	120	29,00	2,0	2,1	70,50	104.5	78,4	۵	15.00	1,5	NU3211M NU311	NJ311	NUP311	N311	HJ311
	120	29,00	2,0	2,0	70,50	104,5	77,7		14,00	1,5	NU311E	NJ311E	NUP311E	INSTI	HJ311E
	140	33,00	2,1	2,1	77,20	117,2	86,4		16,60	3,0	NU411	NJ411	NUP411	N411	HJ411
)	110	22,00	1,5	1,5	73,50	97,5	79.0		11.00	1,6	NU212	NJ212	NUP212	N212	HJ212
,	110	28,00	1,5	1,5	73,50	37,0	70,0	U	11,00	1,6	NU2212	NJ2212	NUP2212	NEIL	110212
	110	36,50	1,5	2,0	72,38					4,5	NU5212M	1102212	1101 2212		
	130	31,00	2,1	2,1	77,00	113,0	85,3	9	15,50	1,5	NU312	NJ312	NUP312	N312	HJ312
	130	46,00	2,1	2,1	77,00	,.			. 0,00	4,5	NU2312	NJ2312	NUP2312		
	150		,	2,1		127,0	93,1	10	16,50	2,0	NU412	NJ412	NUP412	N412	HJ412
		35,00	2,1		83,00	127,0	93,1	10	16,50					N412	HJ41
			ся ос												

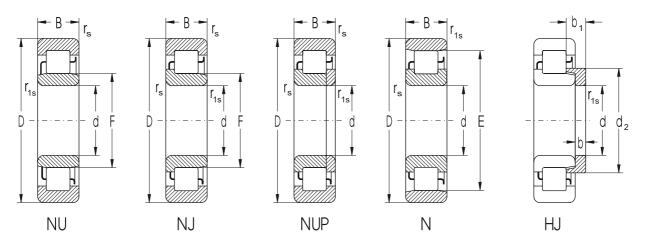


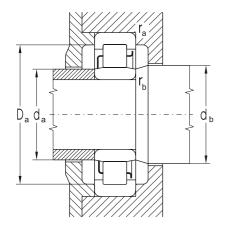

Основная і	рузоподъемность	Предельная	частота	Прис	оедин	ительн	ые ра	змеры						Macca	
динамичес С _г	ская статическая С _{ог}	вращения дл пластическо смазкой		d	d _а мин	d _а макс	d _ь мин	d _с мин	d _d макс	D _а макс	D _ь мин	r _а макс	r _ь макс	~ Подш.	Упор. к
кН		МИН ⁻¹		ММ										КГ	
40.000	41 100	7500	0000	45	FO	E0.	F7	C1	74	70	70	1.0	1.0	0.4000	0.05
43,800	41,100		8900	45	52 52	53 53	57 57	61 61	74 -	78 78	78	1,0	1,0	0,4300	0,05
61,900 61,900	60,700 60,700	7500 7500	8900 8900		52	53	57	61	74	78	- 78	1,0 1,0	1,0 1,0	0,4500 0,4250	0,05 0,05
76,400	79,400	7100	8400		52	53	57	61	-	78	- 70	1,0	1,0	0,4230	0,00
76,400	79,400	7100	8400		53	53	57	61	-	76	-	1,5	1,0	0,5200	
89,100	117,700	6700	7900		53	-	57	-	-	76	-	1,5	1,0	0,3200	
70,800	61,900	6300	7500		52	56	60	66	84	91	90	1,5	1,5	0,7970	0,10
102,000	98,000	6000	7100		52	56	60	66	- 04	91	- 90	1,5	1,5	0,8700	0,10
139,000	147,000	5600	6700		52	56	60	66		91	-	1,5	1,5	1,3600	0,10
104,000	90,900	5300	6300		55	62,7	66	75	99	107	103	2,0	2,0	1,6500	0,18
64,300	65,600	6700	7900	50	57	57	61	66	- 33	83	-	1,0	1,0	0,4900	0,18
63,100	66,800	7100	8400	30	57	58	62	66		83	-	1,0	1,0	0,4900	0,00
84,100	90,900	6700	7900		57	57	61	66		83	-	1,0	1,0	0,5800	
92,600	128,000	6300	7500		58	-	62	-		81	-	1,5	1,0	0,3900	
87,400	79,400	5600	6700		60	63	67	74	93	100	99	2,0	2,0	1,1500	0,15
117,000	114,000	5300	6300		60	63	67	74	95	100	100	2,0	2,0	1,1300	0,13
123,000	126,000	5600	6700		60	63	67	74	95	100	-	2,0	2,0	0,1700	0,14
168,000	178,000	5000	6000		60	63	67	74	_	100	_	2,0	2,0	1,8300	
139,000	114,000	4700	5600		63	68	73	82	109	116	114	2,0	2,0	2,0000	0,23
56,200	56,200	6300	7500	55	62	65	68	73	86	91	91	1,5	1,0	0,6400	0,08
85,800	90,900	6300	7500	55	62	64,5	68	73	-	91	-	1,5	1,0	0,6600	0,08
76,400	82,500	6300	7500		62	65	68	73		91		1,5	1,0	0,7800	0,00
119,000	171,000	5600	6700		64	-	69	-		90	-	2,0	1,5	1,2000	
108,000	100,000	5300	6300		65	67	72	80	102	110	108	2,0	2,0	1,4500	0,19
136,000	128,000	4700	5600		65	67	72	80	-	110	-	2,0	2,0	1,3800	0,18
139,000	128,000	4500	5300		68	71	79	88	115	126	120	2,0	2,0	2,5000	0,30
66,800	68,100	5600	6700	60	67	71	75	80	95	101	101	1,5	1,5	0,8200	0,30
98,100	112,000	5600	6700	00	69	69,5	74	79	-	101	-	1,5	1,5	1,0500	0,11
150,000	211,000	5300	6300		69	-	74	-	_	99	-	2,0	1,5	1,5900	
121,000	114,000	4700	5600		72	75	79	87	110	118	117	2,0	2,0	1,8500	0,22
168,000	174,000	4700	5600		72	75	79	87	-	118		2,0	2,0	2,7000	0,22
168,000	158,000	4200	5000		73	77	85	95	124	136	130	2,0	2,0	3,0000	0,34
100,000	100,000	1200	5000		70	- 11	00	00	127	100	100	۷,0	۷,0	0,0000	0,04

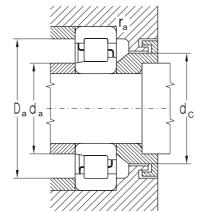

Однорядные роликовые подшипники с короткими цилиндрическими роликами $d = 65 \dots 80 \text{ мм}$

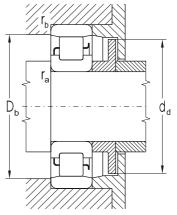


l	D	В	r _s мин	r _{1s} мин	F	Е	d ₂ макс	b	b ₁	S ¹⁾	NU	NJ	NUP	N	Упор. к. НЈ
им															
5	120	23,00	1,5	1,5	79,600	105,6	85,6	6	11,00	1,6	NU213	NJ213	NUP213	N213	HJ213
	120			1,5	79,600	100,0	00,0	U	11,00	1,6	NU2213	NJ2213	NUP2213	11210	110210
	120			1,7	80,420					4,5	NU5213M	1102210	1101 2210		
	140	33,00		2,1	83,500	121,5	92.2	10	17,00	1,5	NU313	NJ313	NUP313	N313	HJ313
	140			2,1	82,500	,-			15,50	1,5	NU313E	NJ313E	NUP313E		HJ313E
	140	48,00		2,1	83,500		,		,	4,5	NU2313	NJ2313	NUP2313		
	160	37,00	2,1	2,1	89,300		99,9	11	18,00	2,0	NU413MAS	NJ413MAS	NUP413MAS		HJ413
0	125	24,00	1,5	1,5	84,500	110,5	90,5	7	12,50	1,6	NU214	NJ214	NUP214	N214	HJ214
	125	31,00	1,5	1,5	84,500					1,6	NU2214	NJ2214	NUP2214		
	125			2,2	84,840					4,5	NU5214M				
	150		- 1	2,1	90,000	130,0	99,2	10	17,50	1,5	NU314	NJ314	NUP314	N314	HJ314
	150			2,1	90,000					4,1	NU2314	NJ2314	NUP2314		
	150	51,00	- '	2,1	89,000					4,1	NU2314EMAS	NJ2314EMAS	NUP2314EMAS		
	180	42,00			100,000	152,0	112,0			2,0	NU414	NJ414	NUP414	N414	HJ414
5	130			1,5	88,500	116,5	94,9		12,50	1,6	NU215	NJ215	NUP215	N215	HJ215
	130			1,5	88,500		94,6	/	11,00	1,6	NU215E	NJ215E	NUP215E		HJ215E
	130			1,5	88,500					2,1	NU2215E	NJ2215E	NUP2215E		
	130			1,5	89,014	100 5	105.0	4.4	10.50	4,5	NU5215M	N 1045	NUID045	NOTE	111045
	160 160	37,00 55,00		2,1	95,500 95,500	139,5	105,6	- 11	18,50	1,5 4,5	NU315 NU2315	NJ315 NJ2315	NUP315 NUP2315	N315	HJ315
	190	45,00			104,500	160,5	117,0	12	21 50	2,0	NU415	NJ415	NUP415	N415	HJ415
0	125	22,00		1,0	91,500	100,5	117,0	10	21,00	1,2	NU1016	NOTIS	NOF413	11713	110713
	140	26,00		2,0	95,300	125,3	102,2	8	13,50	2,0	NU216	NJ216	NUP216	N216	HJ216
	140	33,00	- '	2,0	95,300	120,0	102,2		10,00	2,5	NU2216	NJ2216	NUP2216	11210	110210
	140	33,00		2,0	95,300					2,5	NU2216E	NJ2216E	NUP2216E		
	140	44,45		2,1	95,280					5,0	NU5216M				
	170	39,00		2,1	103,000	147,0	113,1	11	19,50	1,5	NU316	NJ316	NUP316	N316	HJ316
	200	48,00	3,0	3,0	110,000	170,0	123,8	13	22,00	2,0	NU416M	NJ416M	NUP416M	N416M	HJ416

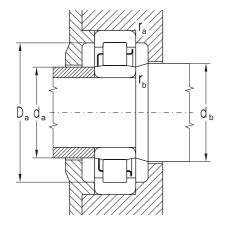


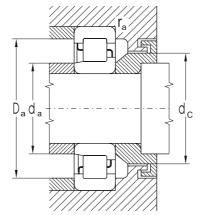

динамичес	грузоподъемность ская статическая	Предельная вращения дл пластическо	ія смазки	Прис	:оедині	ительн	ые ра	змеры						Macca ~	
O _r	C _{or}	смазкой	маслом	d	d _а мин	d _а макс	d _ь мин	d _с мин	d _d макс	D _а макс	D _b мин	r _а макс	r _ь макс	Подш.	Упор. к
κH		МИН ⁻¹		ММ										КГ	
79,40	82,500	5300	6300	65	72	77	81	87	103	111	110	1,5	1,5	1,0500	0,13
117,00	136,000	5300	6300	00	72	77	81	87	-	111	-	1,5	1,5	1,4500	0,10
139,00	196,000	4700	5600		77	-	83	-	-	108	-	1,5	1,5	1,88	
131,00	128,000	4500	5300		76	78	85	94	119	128	126	2,0	2,0	2,2500	0,29
181,00	178,000	4200	5000		76	77	84	93	-	128	-	2,0	2,0	2,3500	0,27
192,00	203,000	4500	5300		76	78	85	94		128	-	2,0	2,0	3,2500	0,21
181,00	174,000	3800	4500		78	83	91	101		146	_	2,0	2,0	3,6000	0,43
79,40	82,500	5600	6700	70	77	82	86	92	108	116	115	1,5	1,5	1,1500	0,16
117,00	139,000	5000	6000	70	77	82	86	92	-	116	-	1,5	1,5	1,5000	0,10
178,00	261,000	4700	5600		81,5	-	87	-		112	-	2,0	1,5	2,2200	
147,00	144,000	4200	5000		81	85	92	101	127	138	135	2,0	2,0	2,7500	0,34
215,00	233,000	4200	5000		81	85	92	101	-	138	-	2,0	2,0	5,2500	0,54
282,00	310,000	3800	4500		81	84	91	100	-	138		2,0	2,0	4,2100	
224,00	215,000	3300	4000		85	93	102	114	149	164	156	2,5	2,5	5,2500	0,61
96,20	96,200	4700	5600	75	82	85	90	96	114	121	120	1,5	1,5	1,2500	0,01
131,00	147,000	4500	5300	75	82	85	90	96	-	121	120	1,5	1,5	1,3000	0,17
162,00	196,000	4500	5300		82	85	90	96	-	121	-	1,5		1,6500	0,10
196,00	299,000	4500	5300		85,5	- 00	91		-	117			1,5	-	
178,00		3800	4500		86		97	107	137	148	- 1/E	2,0	1,5	2,4100	0.40
266,00	178,000	3800	4500		86	93 93	97	107	-	148	145	2,0	2,0	3,2500	0,40
	287,000				90						-	2,0	2,0	4,8500	0.00
261,00	251,000	3200	3800	80	85	98 90	107 94	119	158	174 118	164	2,5	2,5	6,2500	0,80
66,80	76,400	5000 4500	6000 5300	80	90	90			105	130	-	1,0	1,0	0,9900	0.01
106,00	114,000						97	104	125		130	2,0	2,0		0,21
147,00	178,000	4500	5300		90	92	97	104	-	130	-	2,0	2,0	1,9500	
196,00	246,000	4200	5000		90	92	97	104	-	130	-	2,0	2,0	2,0500	
185,00	282,000	4200	5000	00	91,5	-	98	- 110	-	126	-	2,0	2,0	2,9100	0.40
192,00	192,000	3500	4200	80	99	97	105	116	144	158	153	2,0	2,0	3,9000	0,49
299,00	293,000	3000	3500		95	105	112	125	167	184	174	2,5	2,5	7,3000	0,80

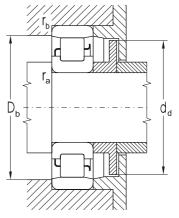

Однорядные роликовые подшипники с короткими цилиндрическими роликами $d=85\dots 105\ \text{MM}$



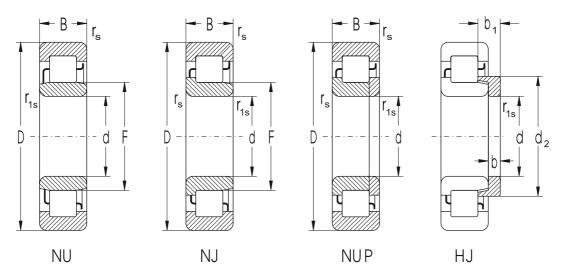
Раз	меры										Обозначение	е подшипника			V
d	D	В	r _s мин	r _{1s} мин	F	Е	d ₂ макс	b	b ₁	S ¹⁾	NU	NJ	NUP	N	Упор. к. НЈ
ММ															
85	150	28,0	2,0	2,0	101,800	133,8	109,2	8	14,00	2,0	NU217	NJ217	NUP217	N217	HJ217
	150	36,0	2,0	2,0	100,500					2,0	NU2217E	NJ2217E	NUP2217E		
	150	49,21	2,1		102,000					5,5	NU5217M				
	180	41,0	3,0		108,000	156,0	119,0		20,50	2,0	NU317	NJ317	NUP317	N317	HJ317
	210	52,0	4,0		113,000		127,7		24,00	2,5	NU417	NJ417	NUP417		HJ417
90	160	30,0	2,0		107,000	143,0	115,3	9	15,00	2,0	NU218	NJ218	NUP218	N218	HJ218
	160	52,4	2,1		107,218					6,0	NU5218M			110.10	
	190	43,0	3,0		115,000	165,0	126,5		21,00	2,0	NU318	NJ318	NUP318	N318	HJ318
	190	43,0	3,0		113,500		124,2		18,50	2,0	NU318E	NJ318E	NUP318E		HJ318E
	225	54,0	4,0		123,500		139,1		24,00	2,5	NU418	NJ418	NUP418		HJ418
95	225 170	54,0	4,0		123,500	151 5	139,1 122,2		24,00	2,5	NU418MAS NU219	NJ418MAS	NUP418MAS	N219	HJ418 HJ219
95	170	32,0 43,0	2,1 2,1	- '	113,500 113,500	151,5	122,2	9	15,50	2,0 3,0	NU219 NU2219	NJ219 NJ2219	NUP219 NUP2219	N219	постя
	170	55,56	2,1		113,520					6,0	NU5219M	NJZZ19	NUP2219		
	200	45,0	3,0		121,500	173,5				2,0	NU319	NJ319	NUP319	N319	
	200	45,0	3,0		121,500	170,0				1,9	NU319EM	NJ319EM	NUP319EM	NOIS	
	240	55,0	4,0		133,500					2.5	NU419M	NJ419M	NUP419M		
00	180	34,0	2,1		120,000	160.0	129,2	10	17.00	2,0	NU220	NJ220	NUP220	N220	HJ220
	180	46,0	2,1		120,000		, _		,	3,0	NU2220	NJ2220	NUP2220		
	180	60,32	2,1		121,005					7,0	NU5220M				
	215	47,0	3,0		129,500	185,5	142,4	13	22,50	2,0	NU320	NJ320	NUP320	N320	HJ320
	215	73,0	3,0	3,0	127,500					4,9	NU2320EMAS	NJ2320EMAS	NUP2320EMAS		
	250	58,0	4,0	4,0	139,000		155,9	16	27,00	2,5	NU420	NJ420	NUP420		HJ420
)5	190	36,0	2,1	2,1	126,800	168,8	136,5	10	17,50	2,0	NU221	NJ221	NUP221	N221	HJ221
	190	65,1	2,1	2,1	126,520					7,0	NU5221M				
	225	49,0	3,0	3,0	135,000	195,0	148,8	13	22,50	4,5	NU321	NJ321	NUP321	N321	HJ321
	260	60,0	4,0	4,0	144,500		162,0	16	27,00	2,5	NU421	NJ421	NUP421		HJ421
4)															
)	Доп	ускает	СЯ ОС	евое	смещені	ие с це	нтралі	ьНОГ	о поло:	жения					

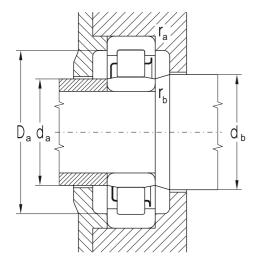

Основная грузоподъемность		Предельная	частота	Прис	оедин	ительн	ые ра	змеры						Macca		
динамичес С _г	кая статическая С _{ог}	вращения дл пластическої смазкой		d	d _а мин	d _а макс	d _ь мин	d _с мин	d _d макс	D _а макс	D _b мин	r _а макс	r _ь макс	~ Подш.	Упор. к	
кН		МИН ⁻¹		ММ										КГ		
121,000	131,000	4200	5000	85	95	99	104	111	131	140	138	2,0	2,0	1,9000	0,25	
	-			00	95	98	103	110	-	140	130				0,23	
220,000	261,000 316,000	3800 3800	4500 4500		98	98	103	-		135		2,0 2,0	2,0	2,5200 3,6900		
211,000 215,000	215,000	3300	4000		98	103	110	121	- 174	166	160	2,5	2,0	4,5000	0,57	
362,000		3000	3500		105		115	129	-	190	162	3,0	2,5 3,0	8,7000	0,89	
	362,000	4000	4700	90	100	108	109	117	140	150	147			· ·	0,89	
147,000 237,000	158,000 355,000	3500	4200	90	103	105	110	-	140	144		2,0	2,0	2,3000	0,31	
											170	2,5	2,0	4,4800	0.65	
233,000	242,000	3200	3800		103	111	117	128	162	176	172	2,5	2,5	5,4000	0,65	
316,000	329,000	3000	3500		103	110	116	127	-	176	-	2,5	2,5	5,5000	0,60	
391,000	406,000	2700	3200		110	117	125	140	-	205	-	3,0	3,0	11,7000	1,05	
391,000	406,000	2700	3200	٥٢	110	117	125	140	- 440	205	-	3,0	3,0	11,7000	1,05	
162,000	181,000	3800	4500	95	107	111	116	124	149	158	155	2,0	2,0	2,8000	0,35	
233,000	282,000	3800	4500		107	111	116	124	-	158	-	2,0	2,0	3,8500		
335,000	511,000	3300	4000		110	-	117	-	-	153	-	2,5	2,0	5,6500		
256,000	266,000	3200	3800		109	119	124	135	170	186	178	2,5	2,5	6,2000		
329,000	362,000	2800	3300		109	119	124	135	-	186	-	2,5	2,5	6,5000		
430,000	447,000	2500	3000	100	115	125	136	151	-	220	-	3,0	3,0	13,5000	0.15	
178,000	203,000	3500	4200	100	112	117	122	131	157	168	165	2,0	2,0	3,4000	0,45	
261,000	322,000	3500	4200		112	117	122	131	-	168	-	2,0	2,0	4,6500		
304,000	473,000	3200	3800		116,5	-	124	-	-	162	-	2,0	2,0	6,4900		
299,000	310,000	2800	3300		113	125	132	145	182	201	190	2,0	2,0	7,7000	0,91	
596,000	694,000	2500	3000		113	123	130	144	-	201	-	2,5	2,5	12,5000		
473,000	501,000	2400	2800		120	130	141	158	-	230	-	3,0	3,0	14,0000	1,55	
200,000	224,000	3300	4000	105	117	122	129	138	166	178	175	2,0	2,0	4,0000	0,51	
362,000	573,000	3000	3500		121,5	-	130	-	-	171	-	2,0	2,0	7,9400		
341,000	362,000	2700	3200		119	132	137	150	192	211	199	2,5	2,5	8,7500	1,00	
531,000	562,000	2200	2700		125	135	147	164	-	240	-	3,0	3,0	19,0000	1,65	

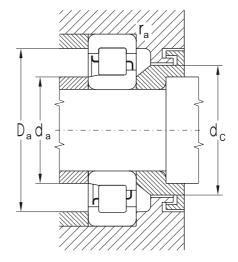

Однорядные роликовые подшипники с короткими цилиндрическими роликами $d=110 \dots 150 \ \text{мм}$



ł	меры D	В	r _s мин	r _{ts}	F	Е	d ₂ макс	b	b ₁	S ¹⁾	NU	е подшипника NJ	NUP	N	Упор. к. НЈ
							marto								
IM															
)	200	38,0	2,1	2,1	132,500	178,5	143.1	11	18,50	2,5	NU222	NJ222	NUP222	N222	HJ222
	200	53,0			132,500	170,0	1 10,1		10,00	5,0	NU2222	NJ2222	NUP2222	1122	110222
	200			-	132,951					7,0	NU5222M				
	240	50,0	3,0	3,0	143,000	207,0	157,5	14	23,00	2,7	NU322	NJ322	NUP322	N322	HJ322
	240	50,0	3,0	3,0	143,000					2,9	NU322E	NJ322E	NUP322E		
	280	65,0			155,000		173,4	17	29,50	2,7	NU422	NJ422	NUP422		HJ422
)	180	28,0		1,1	135,000					2,0	NU1024				
	215	40,0	2,1	2,1	143,500	191,5	154,5	11	19,00	2,5	NU224	NJ224	NUP224	N224	HJ224
	215	58,0	2,1		143,500					5,4	NU2224	NJ2224	NUP2224		
	215	76,2	2,1		145,140		470.5		00.50	7,0	NU5224M	111004	NUIDOO 4		11.1004
	260	55,0			154,000		170,5	14	23,50	2,7	NU324	NJ324	NUP324		HJ324
	260	86,0			154,000 170,000		100.0	17	20.50	6,4	NU2324EMAS NU424	NJ2324EMAS	NUP2324EMAS		111404
)	310 200	72,0 33,0	5,0	1,1	148,000		188,0	17	30,50	2,7	NU424 NU1026	NJ424	NUP424		HJ424
)	230	40,0			156,000	204,0	167.0	11	19,00	2,5	NU226	NJ226	NUP226	N226	HJ226
	230	79,38		-	155,000	204,0	107,0	- 11	19,00	8,0	NU5226M	140220	NUFZZU	NZZU	ПОZZU
	280	58,0		4,0	167,000		182,3	14	23,00	2,9	NU326E	NJ326E	NUP326E		HJ326E
)	250	42,0		3,0	169,000	221,0		11	19,00	2,5	NU228	NJ228	NUP228	N228	HJ228
	250	82,55		4,0	168,460		101,0		10,00	10,0	NU5228M				
	300	62,0			180,000		198,4	15	26,00	2,7	NU328	NJ328	NUP328		HJ328
0	225	35,0		1,5	169,500				<u> </u>	2,0	NU1030				
	270	45,0		3,0	182,000		194,7	12	20,50	2,4	NU230	NJ230	NUP230		HJ230
	270	45,0	3,0	3,0	182,000		193,7	12	19,50	2,4	NU230E	NJ230E	NUP230E		HJ230E
	270	88,9	2,3	2,3	181,544					10,0	NU5230M				
	320	65,0	4,0	4,0	193,000		212,3	15	26,50	2,7	NU330	NJ330	NUP330		HJ330
)					смещен										




Основная г	оузоподъемность	Предельная	частота	Прис	оедин	ительн	ые ра	змеры						Macca	
динамичес С _г	кая статическая С _{ог}	вращения д пластическо смазкой		d	d _а мин	d _а макс	d _ь мин	d _с мин	d _d макс	D _а макс	D _b мин	r _а макс	r _ь макс	~ Подш.	Упор. к
кН		МИН ⁻¹		ММ										КГ	
222	074 000	2222	0000	440	400	405	105	4.45	475	100	400	0.0	0.0	4.0500	0.00
237,000	271,000	3200	3800	110	122	125	135	145	175	188	182	2,0	2,0	4,6500	0,62
341,000	422,000	3200	3800		122	125	135	145	-	188	-	2,0	2,0	6,9500	
464,000	736,000	3000	3500		128	-	137	-	-	180	-	3,0	2,0	10,0000	
391,000	414,000	2500	3000		124	135	145	160	204	226	211	2,5	2,5	10,5000	1,17
447,000	492,000	2400	2800		124	135	145	160	-	226	-	2,5	2,5	11,0000	
584,000	631,000	2100	2500		130	140	157	175	-	260	-	3,0	3,0	20,0000	2,16
131,000	168,000	3300	4000	120	128	131	138	-	-	171	-	2,0	1,0	2,4500	
261,000	299,000	3000	3500		132	138	146	157	188	203	196	2,0	2,0	5,6500	0,72
369,000	473,000	3000	3500		132	138	146	157	-	203	-	2,0	2,0	8,5500	
482,000	794,000	2700	3200		140	-	149	-	-	194	-	2,0	2,0	11,8000	
447,000	473,000	2400	2800		134	145	156		-	246	-	2,5	2,5	13,0000	1,40
810,000	981,000	2100	2500		134	145	156	172	-	246	-	2,5	2,5	24,5000	
736,000	810,000	1900	2200		144	155	172	192	-	286	-	4,0	4,0	28,0000	2,60
162,000	203,000	3200	3800	130	138	143	151	-	-	191	-	2,0	1,0	3,7500	
271,000	322,000	2700	3200		144	150	158	169	201	216	208	2,5	2,5	6,5000	0,84
511,000	841,000	2500	3000		149	-	159	-	-	207	-	3,0	2,0	13,8000	
619,000	694,000	2000	2400		148	155	169	186	-	262	-	3,0	3,0	17,0000	1,65
310,000	369,000	2500	3000	140	154	160	171	182	218	236	255	2,5	2,5	8,2500	1,00
596,000	981,000	2200	2700		162	-	173	-	-	225	-	3,0	3,0	17,1000	
619,000	708,000	2000	2400		158	166	182	198	-	282	-	3,0	3,0	20,0000	2,05
192,000	251,000	2700	3200	150	159	165	173	-	-	213	-	2,0	1,5	4,8500	
369,000	455,000	2200	2700		164	170	184	196	-	256	-	2,5	2,5	10,5000	1,35
447,000	552,000	2200	2700		164	170	184	196	-	256	-	2,5	2,5	11,0000	1,30
736,000	1260,000	2000	2400		174	-	187	-	-	243	-	5,0	2,0	22,9000	
681,000	779,000	1900	2200		168	185	195	213	-	302	-	3,0	3,0	27,0000	2,37


Однорядные роликовые подшипники с короткими цилиндрическими роликами $d=160 \dots 1180 \text{ мм}$

Разі	иеры									Обозначени	е подшипник	a		
d	D	В	r _s мин	r _{1s} мин	F	d_2	b мак	c c	S ¹⁾	NU	NJ	NUP	N	Упор. к. НЈ
ММ														
160	290	48,0	3,00	3,0	195,000	207,4	12	20,00	2,5	NU232M	NJ232M	NUP232M		HJ232
	290	98,42	2,50	6,3	193,634				10,0	NU5232M				
170	260	42,0	2,10	2,1	193,000				3,0	NU1034				
	310	52,0	4,00	4,0	207,000	228,8	12	20,00	2,9	NU234M	NJ234M	NUP234M		HJ234
	310	104,77	3,20	6,3	205,483				10,0	NU5234M				
180	280	46,0	2,10	2,1	205,000				3,6	NU1036				
	320	52,0	4,00	4,0	217,000	230,8	12	20,00	2,9	NU236M	NJ236M	NUP236M		HJ236
	320	86,0	4,00	4,0	218,000	230,5	12	29,00	6,9	NU2236M	NJ2236M	NUP2236M		HJ2236
200	310	51,0	2,10	2,1	229,000				4,2	NU1040				
	360	58,0	4,00	4,0	243,000	258,2	14	23,00	2,9	NU240E	NJ240E	NUP240E		HJ240E
220	340	56,0	3,00	3,0	250,000				4,1	NU1044				
240	360	56,0	3,00	3,0	270,000				4,1	NU1048	111040			
	440	72,0	5,00	5,0	295,000	045.0	40	05.00	4,0	NU248	NJ248			111040
000	440	72,0	5,00	5,0	295,000	315,0	16	25,90	4,0	NUJ248	NH248	NUDJOSO		HJ248
260	400	65,0	4,00	4,0	296,000				2,0	NU1052		NUP1052		
000		130,0	5,00	5,0	320,000				4,3	NU2252				
280	420	65,0	4,00	4,0	316,000				5,0	NU1056	NJ1060			
300	460	74,0	5,00	5,0	340,000	057.0	10	00.00	4,5	NU1060				1114000
220	460	74,0 74,0	5,00	5,0	340,000	357,6	19	36,00	4,5	NUJ1060	NH1060			HJ1060
320 360	480	82,0	4,00	4,0 6,0	360,000				5,0	NU1064				
300	540 540	82,0	6,00	6,0	480,000 480,000	423,0	21	39,50	5,0 5,0	NU1072	NH1072			HJ1072
380	560	82,0	5,00	5,0	425,000	423,0	21	39,30	6.0	NU1076	NHIUIZ			HJ 1072
400	600	90,0	5,00	5,0	450,000	470	10.6	42,6	5,0	NU1076 NU1080	NUJ1080			HJ1080
400		148,0	5,00	5,0	450,000	470	19,0	42,0	5,0	NU3080	11001000			1101000
		185,0	6,00	6,0	480,000				16,0	NU2280				
600		118,0	5,00	5,0	650,000				12,0	NU29/600		NUP29/600		
850	1120		8,00	8,0	925,000				15,0	NU29/850		NUP29/850		
900	1180		8,00	8,0	982,000				17,0	NU29/900		NUP29/900		
950	1250		10,00	10,0	1032,000				17,0	NU29/950		NUP29/950		
000		185,0	10,00	10,0	1090,000				17,0	NU29/1000		NUP29/1000		
060	1400		10,00	10,0	1155,000				20,0	NU29/1060		NUP29/1060		
180	1540		10,00	10,0	1280,000				21,0	NU29/1180		NUP29/1180		
100	1010	200,0	10,00	10,0	1200,000				21,0	11020/1100		1101 20/1100		
1)	Допу	скает	ся осеі	30e CN	иещение с	централ	ТЬНОГ	о поло	жения					
	,													

цинамическа С _г	я статическая													
o _r	\cap	вращения для пластической											~	
	C_{or}	смазкой	маслом	d	d _a мин	d _a d макс м		d _d макс	D _а макс	D _b	r _а макс	r _ь макс	Подш.	Упор. н
кH		МИН ⁻¹		мм									КГ	
-11 000	004.000	0000	0.400	400	474	400	407	040	070	0	_	0.5	4.4.7000	4.50
511,000	631,000	2000	2400	160	174	180	197	210	276	2,		2,5	14,7000	1,50
764,000	1310,000	1900	2200	470	186	-	199	-	261	5,		2,0	28,9000	
276,000	376,000	2200	2700	170	179	190	197	-	248	2,		2,0	7,9000	
607,000	750,000	1900	2200		188	195	211	223	293	3,		3,0	16,6000	1,70
391,000	1470,000	1800	2100		197	-	211	-	279	5,		3,0	35,5000	
329,000	447,000	2100	2500	180	189	196	209	-	268	2,		2,0	10,5000	
631,000	794,000	1800	2100		198	207	220	233	302	3,	0	3,0	19,5000	1,80
736,000	1060,000	1800	2100		198	208	221	233	302	3,		3,0	31,2000	1,90
383,000	531,000	1900	2200	200	212	220	233	-	298	2,		2,0	14,0000	
779,000	1000,000	1500	1800		218	227	246	261	342	3,		3,0	28,4000	2,70
501,000	694,000	1700	200	220	234	240	254	-	326	2,	5	2,5	18,5000	
531,000	764,000	1600	1900	240	254	260	275	-	346	2,	5	2,5	20,0000	
944,000	1280,000	1300	1600		258	293	298	316	422	3,	0	3,0	50,5000	
944,000	1280,000	1300	1600		258	293	298	316	422	3,		3,0	50,5000	4,68
643,000	962,000	1400	1700	260	278	280	300	-	382	3,		3,0	29,0000	
1760,000	2900,000	1100	1400		280	309	324	-	460	4,		4,0	90,0000	
81,000	1020,000	1300	1600	280	296	311	320	-	404	3,		3,0	32,5000	
391,000	1310,000	1200	1400	300	318	325	344	360	442	3,		3,0	43,6000	
391,000	1310,000	1200	1400	000	318	325	344	360	442	3,		3,0	43,6000	5,63
909,000	1390,000	1100	1300	320	336	355	364	-	464	3,		3,0	48,5000	0,00
1076,000	1753,000	950	1100	360	382	390	410	-	518	4,		4,0	67,5000	
1076,000	1753,000	950	1100	300	382	390	410	427	518	4,		4,0	67,5000	10,00
	· ·			200			430						71,0000	10,00
1166,000	1982,000	850	1000	380	400	420		-	540	4,		4,0		10.50
1470,000	2330,000	840	1000	400	422	435	455	-	578	4,		4,0	89,0000	10,50
2255,000	4900,000	760	910		422	435	455	-	578	4,		4,0	150,5000	
3410,000	5960,000	710	840		426	460	485	-	694	5,		5,0	350,0000	
2230,000	4853,000	560	700	600	614	644	654	675	750	4,		4,0	173,0000	
3760,000	8740,000	380	450	850	878	920	930	952	1092	5,		5,0	430,0000	
1220,000	9810,000	300	400	900	928	977	987	1011	1152	5,		5,0	500,0000	
1577,000	11452,000	300	370	950	978	1027	1041	1066	1220	5,		5,0	597,0000	
1920,000	11600,000	300	350	1000	1036	1085	1095	1122	1284	6,		6,0	720,0000	
5410,000	12800,000	280	330	1060	1096	1150	1160	1189	1364	6,	0	6,0	850,0000	
6310,000	15300,000	250	300	1180	1216	1275	1285	1316	1504	6,	0	6,0	1050,0000	

Двухрядные роликовые подшипники с короткими цилиндрическими роликами

Двухрядные роликовые подшипники с короткими цилиндрическими роликами по исполнению NN имеют два ряда цилиндрических роликов, направляемых тремя бортами на внутреннем кольце. Наружное кольцо выполнено без бортов и поэтому эти подшипники не могут воспринимать осевые нагрузки. Двухрядные роликовые подшипники с короткими цилиндрическими роликами типа NN30K стандартно выпускаются с коническим отверстием с конусностью 1 : 12 (K). На основании предшествующего согласования могут эти подшипники поставляться с цилиндрическим отверстием. Двухрядные роликовые подшипники с короткими цилиндрическими роликами отличаются высокой жесткостью и применяются преимущественно для установки рабочих шпинделей станков и аналогичных устройств. Двухрядные роликовые подшипники с короткими цилиндрическими роликами типа NNU49 имеют три направляющих борта на наружном кольце, гладкое внутреннее кольцо и эти подшипники могут воспринимать лишь радиальную нагрузку. Подшипники типа NNU4920 и NNU4924 поставляются тоже в виде сдвоенных по техническим условиям TPF 11322-80. Таким образом сдвоенная пара подшипников выполняет в узле функции четырехрядных роликовых подшипников с цилиндрическими роликами и удобна для установки валков прокатных станов, правильных установок и т. п.

Основные размеры

Основные размеры роликовых подшипников с цилиндрическими роликами, которые указаны в таблицах размеров, соответствуют международному стандарту по размерам ISO 15.

Обозначения

Обозначения подшипников основного исполнения указаны в таблицах размеров. Отличия исполнения от основного обозначаются с помощью дополнительных знаков (раздел 2.2).

Канавка и отверстия для смазки на наружном кольце

Все размеры двухрядных роликовых подшипников с цилиндрическими роликами с коническим отверстием типа NN30K возможно поставлять с канавкой и отверстиями для смазки на наружном кольце (W33). Такое исполнение подшипника позволяет подавать смазку непосредственно в подшипник между два ряда цилиндрических роликов и этим обеспечить лучше смазку и выше надежность эксплуатации.

Сепараторы

Подшипники с цилиндрическими роликами стандартно выпускаются с массивным латунным сепаратором, который как парвило не обозначается. Подшипники NNU49 выпускаются с массивным латунным сепаратором (М), который обозначается.

Точность

Подшипники с цилинндрическими роликами с коническим отверстием выпускаются лишь по повышенным классам точности Р5 и Р4. Предельные величины по точности размеров и ходу подшипников по классам точности Р5 и Р4 указаны в таблицах 12 и 13.

Подшипники NNU49 и NN39 выпускаются по нормальному классу точности. Постаки подшипников по классу точности Р6 необходимо заранее согласовать с поставщиком.

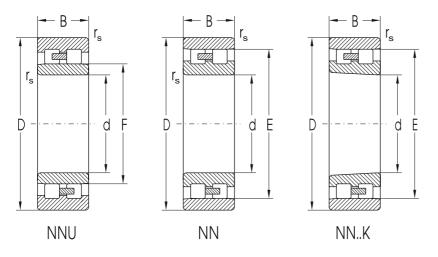
Радилаьные зазоры

Подшипники с цилиндрическими роликами и коническим отверстием выпускаются с пониженным радиальным зазором и с взаимонезаменяемыми кольцами C1NA и C2NA. Знаки C1NA и C2NA объединяются со знаками по классу точности P5 и P4, например P5 + C1NA обозначается P51NA. Величины радиальных зазоров приведены в таблице 25. Подшипники NNU49 выпускаются с нормальным радиальным зазором. Поставки подшипников с увеличенным радиальным зазором C3 необходимо согласовать с поставщиком.

Наклон

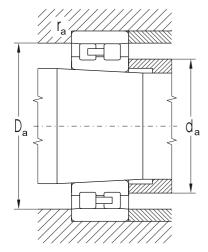
Подшипники с цилиндрическими роликами не предназначаются для применения в узлах, где не обеспечивается взаимная соосность внутренних и наружных колец.

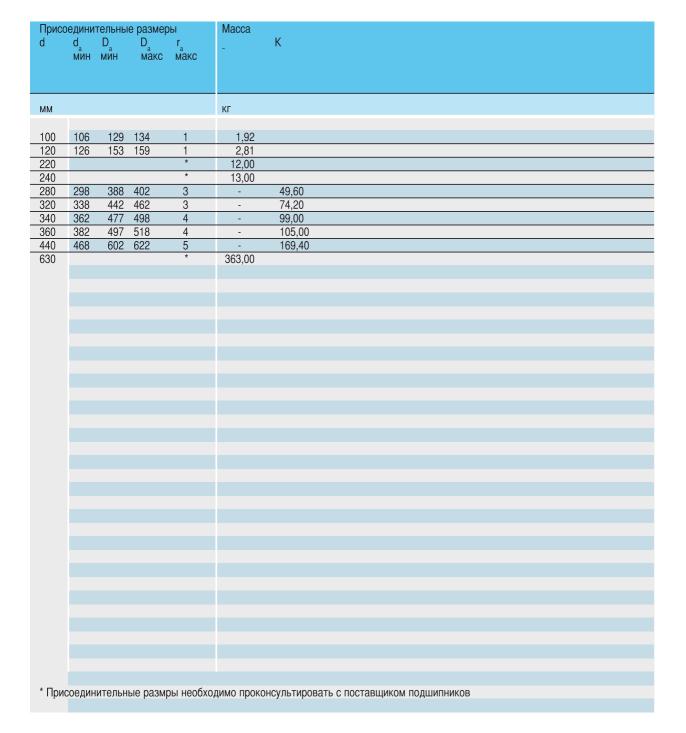
Радиальная эквивалентная динамическая нагрузка


$$P_r = F_r$$
 [KH]

Радиальная эквивалентная статическая нагрузка

$$P_{or} = F_{r}$$
 [KH]




Двухрядные роликовые подшипники с короткими цилиндрическими роликами $d = 100 \dots 630 \text{ мм}$

Разме d	еры D	В	r s мин	E	F	S ¹⁾		рузоподъемность кая статическая С _{ог}	Предельная вращения д пласт. смазкой		Обозначени с цил. отв.	е подшипника с кон. отв.
ММ							кН		МИН ⁻¹			
100	140	40	1,1		113,0	1,7	119	215	3800	4700	NNU4920M	
120	165	40	1,1	070	134,5	1,7	168	304	3200	4000	NNU4924M	
220	320	60	3,5	278		2,0	299	668	1800	2200	NN3944	
240 280	420		3,5 5,0	298 384		2,0 6,7	316 1100	750 2000	1600 1300	2000 1600	NN3948	NN3056K
320	480	100	5,0	438		8,0	1360	2510	1200	1400		NN3064K
340	520	133	6,0	473		9,0	1680	3100	1100	1300		NN3068K
360	540		6,0	493		9,0	1740	3350	1000	1200		NN3072K
440	650	157	8,0			13,0	2460	4920	750	890		NN3088K
630	850		8,0		704,0	5,0	3910	10200	470	600	NNU49/630	
1) Дог	тускае ⁻	гся о	севое	смещ	ение							

Однорядные роликовые подшипники с игольчатыми роликами

Однорядные игольчатые подшипники имеют игольчатые ролики, направляемые в осевом направлении бортами наружного кольца – при этом внутреннее кольцо гладкое - как в части однорядных подшипников с цилиндрическими роликами в исполнении NU. Из этого вытекает то, что такие подшипники не могут воспринимать осевую нагрузку. Однорядные роликовые подшипники с игольчатыми роликами имеют малую высоту сечения и относительно высокую грузоподъемность, т. е. они удобны прежде всего для узлов с ограниченным пространством в радиальном направлении. Подшипники имеют по наружной поверхности наружного кольца канавку и отверстия для смазки. Однорядные игольчатые подшипники выпускаются без сепаратора. Подшипники без сепаратора (V) имеют полное число игольчатых роликов и в результате этого повышенную грузоподъемность по сравнению с подшипниками таких-же размеров с сепаратором. Подшипники поставляются тоже без внутреннего кольца (RNA). В таком случае дорожка качения внутреннего кольца создана непосредственно на валу.

Основные размеры

Основные размеры однорядных игольчатых подшипников, которые приведены в таблицах, соответствуют международному стандарту по размерам ISO 15.

Обозначения

Обозначения однорядных подшипников с игольчатыми роликами основного исполнения указано в таблицах размеров. Отличия исполнения от основного обозначаются с помощью дополнительных знаков (раздел 2.2).

Точность

Однорядные игольчатые подшипники выпускаются по нормальному классу точности Р0 (знак Р0 не указывается). Для специальных случаев подшипниковых узлов, отличающихся требованиями по точности, поставляются подшипники по повышенному классу точности Р6. Поставку таких подшипников необходимо заранее согласовать. Предельные отклонения по точности размеров и ходу приведены в таблице 10.

Радиальные зазоры

Стандартно выпускаемые однорядные игольчатые подшипники имеют радиальный зазор, который не обозначается. Для специальных случаев подшипниковых узлов поставляются подшипники с увеличенным радиальным зазором (СЗ). Значения радиальных зазоров приведены в таблице 26.

Подшипники без внутренних колец

Для подшипниковых узлов, у которых ограничено пространство для установки подшипников, поставляются однорядные игольчатые подшипники без внутреннего кольца (RNA). Игольчатые ролики таких подшипников перемещаются непосредственно по закаленной поверхности вала. Допуски на диаметр внутренней дорожки качения однорядных игольчатых подшипников без внутреннего кольца указаны в следующей таблице.

ERROR: undefined OFFENDING COMMAND: f'~

STACK:

-savelevel-